Communities in Motion 2035:
Regional Long-Range Transportation Plan

Adopted September 20, 2010
Board of Directors, COMPASS

800 S. Industry Way, Suite 100
Meridian, ID 83642
www.compassidaho.org
RESOLUTION NO. 15-2010

FOR THE PURPOSE OF APPROVING
THE AIR QUALITY CONFORMITY FINDING
AND ADOPTING Communities in Motion AS THE REGIONAL
LONG-RANGE TRANSPORTATION PLAN

WHEREAS, the Community Planning Association has been designated by
the Governor of Idaho as the Metropolitan Planning Organization (MPO) responsible
for transportation planning in Northern Ada County and the Nampa Urbanized Area;

WHEREAS, the Safe, Accountable, Flexible, and Efficient Transportation
Equity Act – a Legacy for Users (SAFETEA-LU) and Title 23 Part 450 and title 49
Part 5303 of the Code of Federal Regulations require MPOs to prepare Regional
Long-Range Transportation Plans covering a period of at least 20 years;

WHEREAS, the 1990 Clean Air Act Amendment requires all Regional Long-
Range Transportation Plans in nonattainment areas demonstrate conformity to
applicable state implementation plans for air quality improvements;

WHEREAS, the Community Planning Association of Southwest Idaho has
performed an Air Quality Conformity Demonstration and has concluded the
recommended plan does meet budget limits specified in the State Implementation
Plan for particulate matter, volatile organic compounds and nitrogen oxides;

WHEREAS, the SAFETEA-LU and 23 United States Code Section 134 require
the projects contained in the Regional Long-Range Transportation Plans to be
financially constrained, which condition has been demonstrated in Communities in
Motion; and

WHEREAS, a public comment period was held for Communities in Motion
meeting the requirements of SAFETEA-LU.

NOW, THEREFORE, BE IT RESOLVED, that the Community Planning
Association Board approves the finding that Communities in Motion conforms to
relevant provisions of the State Implementation Plan for Idaho and hereby adopts
Communities in Motion, dated September 20, 2010, as the Regional Long-Range
Transportation Plan.

BE IT FURTHER RESOLVED, that the Community Planning Association of
Southwest Idaho Board of Directors authorizes the submission of this amended plan
to the appropriate local, state, and federal agencies for their consideration.

Dated this 20th day of September 2010.

APPROVED:

By: [Signature]
David Bieter, Chair
Community Planning Association Board

ATTEST:

By: [Signature]
Matthew J. Stoll, Executive Director
Community Planning Association

[Signature]
Communities in Motion – Page iii – September 2010
Abstract

Title: Communities in Motion: Regional Long-Range Transportation Plan

Author: Community Planning Association of Southwest Idaho (COMPASS)

Subject: Regional growth, transportation

Date: Adopted September 20, 2010, COMPASS Board of Directors

Source of Copies: Communications Coordinator
COMPASS
208-855-2558 ext 231
www.compassidaho.org

Abstract: Communities in Motion (CIM) is the regional long-range transportation plan for Ada and Canyon Counties, Idaho, and provides regional transportation solutions for the next twenty-plus years. Communities in Motion evaluates projected population and employment growth, current and future transportation needs, safety, financial capacity, and preservation of the human and natural environment. Communities in Motion offers a vision for land use, known as “Community Choices” and addresses the way land use affects transportation, how investments in transportation influence growth, what and ideal transportation system can achieve, how transportation projects are selected, and how transportation projects serve regional needs.
Preface

The Community Planning Association of Southwest Idaho (COMPASS) is an association of local governments working together to plan for the future of Treasure Valley. COMPASS members set priorities for spending federal and state transportation dollars that come to southwest Idaho and play an important role in making decisions about future long-range transportation needs. They take into consideration environmental and economic factors that may affect our quality of life. COMPASS is the federally designated Metropolitan Planning Organization (MPO) for transportation planning, which is required when an urbanized area reaches 50,000 people. COMPASS has served as the MPO for the Northern Ada County Urbanized Area since 1977 and for the Nampa Urbanized Area since early 2003. Members include two counties, eleven cities, three highway districts, the state department of transportation, and special and ex officio members. The full list is located in the Introduction.

COMPASS is responsible for producing the regional long-range transportation plan and the Transportation Improvement Programs for Ada County and Canyon County. COMPASS also manages corridors studies, monitors growth, and provides demographic, modeling, and geographic information services.

Vision for COMPASS
COMPASS is a respected forum that helps establish a healthy, economically vibrant region, offering people choices in how and where they live, work, play, and travel through the planning and support of a comprehensive multi-modal transportation system.

Vision for Communities in Motion
We envision a Treasure Valley where quality of life is enhanced and communities are connected by an innovative, effective, multi-modal transportation system.

Preparation of this document was financed in part through grants from the U.S. Department of Transportation, the Federal Highway Administration, and the Federal Transit Administration. The contents are the sole responsibility of the Community Planning Association of Southwest Idaho.
TABLE OF CONTENTS

COMMUNITIES IN MOTION 2035

EXECUTIVE SUMMARY ... ES-1
- Defining the Vision .. ES-1
- Growing Our Region ... ES-3
- Designing the Future .. ES-4
- Roadways ... ES-4
- Transit ... ES-8
- Finding the Money .. ES-9
- Major changes in This Plan ES-9
- Putting *Communities in Motion* into Action ... ES-10

CHAPTER 1. INTRODUCTION ... 1-1
- Metropolitan Planning .. 1-1
- About the Area .. 1-2
- Housing and Transportation 1-3
- Employment and Transportation 1-4
- Assumptions ... 1-5
- Elements ... 1-6
- Expectations ... 1-7

CHAPTER 2. TAKING SHAPE ... 2-1
- A Region Takes Shape .. 2-1
 - Transportation and Development Patterns 2-3
 - Demographics .. 2-4
- An Organization Takes Shape: Community Planning Association of SW Idaho ... 2-4
- A Regional Long-Range Transportation Plan Takes Shape: *Communities in Motion* ... 2-5
 - A Change in Focus .. 2-6
 - Public Outreach, Education, Involvement 2-7
- The Current Update .. 2-10
 - Implementation Since 2006 2-11
 - Public Outreach .. 2-23

CHAPTER 3. DEFINING THE VISION .. 3-1
- Where Do We Want to be in 2035? 3-1
- Vision, Goals, and Scenarios 3-1
- Trend vs. Community Choices 3-2
 - Guiding Principles for Land Use 3-6
 - Performance Monitoring Report 3-6
- Definitions .. 3-6
- Strategies/Summary Principles 3-7
- Key Issues ... 3-17
 - Issue 1: Housing/Jobs Balance and Housing Choices 3-17
 - Issue 2: Transportation Choices/Shorter Commute Distances ... 3-20
 - Issue 3: Connectivity through Higher Densities and Less Land Developed ... 3-21
 - Issue 4: Open Space and Farmland 3-21
- In Sum ... 3-22
CHAPTER 4. GROWING THE FUTURE ... 4-1
Regional Growth... 4-1
Demographic Trends ... 4-1
Housing Trends ... 4-2
Energy Trends .. 4-4
Employment Trends .. 4-4
Treasure Valley as a Key Regional Hub ... 4-6
Continuing Compact Growth Vision ... 4-6
Forecasting .. 4-6
Modeling ... 4-7
Monitoring the Vision ... 4-8
Implementing the Vision .. 4-8

CHAPTER 5. DESIGNING THE FUTURE ROADWAY NETWORK 5-1
Where Are We Now? ... 5-1
Roadway Management .. 5-1
Current Ada and Canyon Roadways and Traffic ... 5-2
Land Use Implications for Roadways ... 5-2
Functional Street Classification .. 5-4
How to Use the Functional Classification Maps .. 5-7
Definitions and Specifications .. 5-8
Steps to Finalize Functional Classification .. 5-9
Short-Range Funded (Committed) Projects ... 5-9
The Plan for Future Corridors .. 5-14
How Were Corridors Placed in Priority in the 2006 Plan? 5-15
New Consideration of Corridors – Funded vs. Unfunded 5-16
Evaluating the Funded and Unfunded Corridors .. 5-22
Demonstration of Air Quality Conformance ... 5-29
Surrounding Counties ... 5-32
The Corridors Defined ... 5-33
Corridor Summaries (summaries in alphabetical order; being on page 5-34) 5-34
Amity Road
Black Cat Road
Bowmont/Kuna-More Road
Cherry Land/Fairview Avenue
Cloverdale Road
Dewey Road and New Payette
Five Mile Road
Franklin Road
Happy Valley Road
Harris Creek/Centerville Road
I-84 and I-184
Locust Land and Lake Hazel Road
Linder Road
McDermott Road
Meridian Road/State Highway 69
Middleton Road
Purple Sage/Beacon Light Road
Rail Corridor
Robinson/Star Road
State Highway 16
State Highway 21
State Highway 44 (State Street)
State Highway 45
State Highway 55 (Eagle Road)/Three Cities River Crossing
State Highway 55 (Karcher Road)
Ten Mile Road
US 20/26
Ustick Road

CHAPTER 6. EXPANDING TRANSPORTATION CHOICES 6-1
Local Public Transportation Resources .. 6-1
Public Transportation and Housing Choices ... 6-3
Cost of Providing Public Transportation ... 6-5
Revenue Sources .. 6-8
 Federal Public Transportation Revenues ... 6-8
 Local Public Transportation Revenues ... 6-8
Bike and Pathways .. 6-9
Safe Routes to Schools ... 6-10
Complete Streets ... 6-11
Challenges and Opportunities ... 6-12

CHAPTER 7. MANAGING CONGESTION .. 7-1
Background .. 7-1
Congestion Defined ... 7-1
Congestion Management Process ... 7-2
Federal Requirements .. 7-4
Findings ... 7-4
Management and Operations Strategies ... 7-5
 Background .. 7-5
 Findings .. 7-5
Congestion M&O Toolbox ... 7-6
Access Management ... 7-10
 Access Management Benefits .. 7-11
 Accidents .. 7-11
 Traffic Conditions ... 7-12
 Treasure Valley Planning ... 7-12
Intersection Innovation ... 7-14
 Roundabouts .. 7-14
 High Volume Intersections .. 7-16
Intelligent Transportation Systems (ITS) .. 7-17
 Advanced Traveler Information Systems ... 7-18
 Idaho 511 ... 7-19
 Treasure Valley Services .. 7-19
Modern Traffic Signal Operations .. 7-21
 Signal Timing ... 7-21
Earthquakes ... 9-2
Landslides ... 9-3
Floods .. 9-3
General Findings .. 9-4
Future Actions .. 9-5
Transit Networks and Facilities 9-6
Threats to Transit Passengers and Facilities 9-6
Disruption to Services ... 9-7
Provision of Evacuation Services 9-7

CHAPTER 10. MAKING TRANSPORTATION SAFER 10-1
Background .. 10-1
State Highway Safety Plan ... 10-1
 Aggressive Driving .. 10-3
 Commercial Vehicles ... 10-6
 Emergency Medical Services ... 10-8
 Highway-Rail Grade Crossings 10-9
 Impaired Drivers .. 10-14
 Mature Drivers .. 10-15
 Occupant Protection ... 10-17
 Road Related Crashes .. 10-18
 Vulnerable Users – Bicyclists, Motorcycles, Pedestrians/School Children... 10-21
 Young Drivers .. 10-26

CHAPTER 11. MOVING GOODS AND AIR TRAFFIC 11-1
Background .. 11-1
 The Idaho Trucking Association .. 11-2
 Freight Services .. 11-2
 Highway Freight .. 11-3
 Rail Freight (with Passenger Discussion) 11-5
 Air Travel and Freight .. 11-7
 Linking Project Prioritization and Freight Corridors 11-11
 National and Regional Freight Corridors 11-11
 Local Freight Corridors ... 11-12
 Project Prioritization .. 11-13

CHAPTER 12. FINDING THE MONEY 12-1
Federal Requirements .. 12-1
 The Importance of Financial Analysis 12-1
 Purpose of “Funding Transportation Needs” 12-2
 The Economic Setting .. 12-2
 Roadway Revenue Assumptions 12-3
 Roadway Costs .. 12-4
 Transit Revenue Assumptions 12-4
 Transit Costs ... 12-5
 Conclusions of the Study ... 12-5
 Roadways ... 12-5
 Roadway Maintenance ... 12-6
Where Does the Money Come From? 12-7
Federal Funds .. 12-7
State-Collected Highway Funds .. 12-12
Local Highway Funds ... 12-15
Transit Funds .. 12-20
How Are Projects Budgeted? ... 12-23
Transportation Improvement Program (TIP) .. 12-23
State Transportation Improvement Program (STIP) .. 12-23
Capital Improvement Program (CIP) ... 12-23
Transit Development Program ... 12-24
Cost of the Transportation System ... 12-24
Roadways .. 12-24
Transit ... 12-25
What is the Shortfall and What Does it Mean for the Average Household? 12-26
What are Some of the Potential Revenue Sources that Could or Should be Considered? ... 12-26
What Would it Take to Tap These Sources? .. 12-28

CHAPTER 13. FOSTERING SUSTAINABILITY AND LIVABILITY 13-1
Sustainable Communities Initiative ... 13-1
Provide More Transportation Choices ... 13-2
Promote Equitable, Affordable Housing ... 13-2
Enhance Economic Competitiveness ... 13-2
Support Existing Communities ... 13-2
Coordinate Policies and Leverage Investment .. 13-3
Value Communities and Neighborhoods .. 13-3
Developing a Sustainable, Livable Region .. 13-3

CHAPTER 14. LOOKING BEYOND 2035 ... 14-1
Setting the Stage... 14-1
Growth Beyond 2035 .. 14-2
Buildout Implications .. 14-2
Implications of Buildout Analysis for the Transportation System........................ 14-4
Comparisons to Other Communities ... 14-8
The Next Plan ... 14-9
In Sum .. 14-11

APPENDICES AND OTHER MATERIALS .. Appendices-1
Appendix A. Public Comments and Responses; Comment Form A-1
Appendix B. Member Agency Comments and Responses B-1
Appendix C. Air Quality Conformity Demonstration ... C-1
Appendix D. Transportation Related References from Security Plans D-1
Appendix E. Summary List of Federal Highway Programs E-1
Appendix F. Land Use Plans Used to Develop Land Use Scenarios F-1
Glossary .. Glossary-1
Acronyms ... Acronyms-1
Acknowledgements ...Acknowledgements-1
LIST OF TABLES

Communities in Motion 2035

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Percentage of Housing</td>
<td>1-4</td>
</tr>
<tr>
<td>1-2</td>
<td>Matrix of Key Issues as Related to Goals</td>
<td>1-7</td>
</tr>
<tr>
<td>1-3</td>
<td>Public Survey Questions and Answers</td>
<td>2-26</td>
</tr>
<tr>
<td>1-4</td>
<td>Quantitative Public Comment Results</td>
<td>2-29</td>
</tr>
<tr>
<td>2-1</td>
<td>Estimated Effects of Growth Scenarios</td>
<td>3-3</td>
</tr>
<tr>
<td>2-2</td>
<td>Goals/Objectives/Tasks</td>
<td>3-8</td>
</tr>
<tr>
<td>2-3</td>
<td>Matrix of Key Issues as Related to Goals</td>
<td>3-17</td>
</tr>
<tr>
<td>2-4</td>
<td>Design Principles Consistent with Community Choices</td>
<td>3-22</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary Demographics for 2035</td>
<td>4-8</td>
</tr>
<tr>
<td>3-2</td>
<td>Existing Network with 2010 Demographics</td>
<td>5-2</td>
</tr>
<tr>
<td>3-3</td>
<td>2010-2014 Regional Short Range (Committed) Project List</td>
<td>5-10</td>
</tr>
<tr>
<td>3-4</td>
<td>Programmed Network with 2035 Demographics</td>
<td>5-12</td>
</tr>
<tr>
<td>3-5</td>
<td>Funded Corridors, In Alphabetical Order</td>
<td>5-18</td>
</tr>
<tr>
<td>3-6</td>
<td>Partially Funded Corridors, In Alphabetical Order</td>
<td>5-19</td>
</tr>
<tr>
<td>3-7</td>
<td>Unfunded Corridors, In Alphabetical Order</td>
<td>5-20</td>
</tr>
<tr>
<td>3-8</td>
<td>Funded Corridors with 2035 Demographics</td>
<td>5-22</td>
</tr>
<tr>
<td>3-9</td>
<td>Funded and Unfunded Corridors with 2035 Demographics</td>
<td>5-22</td>
</tr>
<tr>
<td>3-10</td>
<td>Population and Employment Changes Within One Mile of Corridor</td>
<td>5-25</td>
</tr>
<tr>
<td>3-11</td>
<td>Residential Properties Along Corridors</td>
<td>5-26</td>
</tr>
<tr>
<td>3-12</td>
<td>Traffic Impacts on Selected Corridors</td>
<td>5-29</td>
</tr>
<tr>
<td>3-13</td>
<td>Year of Expenditure for Funded Corridors and Partial Corridor Segments</td>
<td>5-30</td>
</tr>
<tr>
<td>3-14</td>
<td>Surrounding County List, In Alphabetical Order</td>
<td>5-33</td>
</tr>
<tr>
<td>4-1</td>
<td>Transit Service Levels and Land Use</td>
<td>6-4</td>
</tr>
<tr>
<td>4-2</td>
<td>Service Levels and Costs for Optimal Transit System</td>
<td>6-6</td>
</tr>
<tr>
<td>4-3</td>
<td>Summary Statistics for Selected Transit Entities</td>
<td>6-7</td>
</tr>
<tr>
<td>4-4</td>
<td>Congestion Thresholds</td>
<td>7-2</td>
</tr>
<tr>
<td>4-5</td>
<td>M&O Strategies “Toolbox”</td>
<td>7-7</td>
</tr>
<tr>
<td>4-6</td>
<td>Signals and Travel Time</td>
<td>7-12</td>
</tr>
<tr>
<td>4-7</td>
<td>Intersection 2010-2030 Return on Investment</td>
<td>7-17</td>
</tr>
<tr>
<td>4-8</td>
<td>Traffic Study Benefits</td>
<td>7-22</td>
</tr>
<tr>
<td>4-9</td>
<td>Ascending (East or Northbound) Travel</td>
<td>7-26</td>
</tr>
<tr>
<td>4-10</td>
<td>Descending (West or Southbound) Travel</td>
<td>7-27</td>
</tr>
<tr>
<td>4-11</td>
<td>TIP Project Prioritization, Potential Points</td>
<td>7-27</td>
</tr>
<tr>
<td>4-12</td>
<td>Prioritization for Congestion Mitigation</td>
<td>7-30</td>
</tr>
<tr>
<td>5-1</td>
<td>Threatened and Endangered Species in Ada and Canyon Counties</td>
<td>8-4</td>
</tr>
<tr>
<td>5-2</td>
<td>Matrix of Environmental and Resource Agency Consultation</td>
<td>8-18</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

COMMUNITIES IN MOTION 2035

Figure 1-1: Interstate-84 Traffic Growth ... 1-5

Figure 2-1: Regional Growth .. 2-4
Figure 2-2: Total Residential Permits ... 2-10
Figure 2-3: Planning Work Supports Transportation Construction Projects 2-12
Figure 2-4: Highway 44 Corridor Study Area ... 2-13
Figure 2-5: US 20/26 Corridor Study Area ... 2-13
Figure 2-6: State Street Study Area ... 2-14
Figure 2-7: Kuna-Mora Road Corridor Study Area ... 2-14
Figure 2-8: Walkable Neighborhoods Analysis Map in Performance Monitoring Report ... 2-16
Figure 2-9: High Capacity Transit Corridor Potential Alignments 2-17
Figure 2-10: Continuous Flow Intersection ... 2-18
Figure 2-11: Median U-Turn with Bowtie ... 2-18
Figure 2-12: Public Participation ... 2-19
Figure 2-13: Complete Streets .. 2-21
Figure 2-14: Example of a Major Activity Center .. 2-22
Figure 2-15: Public Education Series ... 2-23
Figure 2-16: Open House, Fall 2009 ... 2-24
Figure 2-17: Stand-Alone Communities in Motion Display 2-25
Figure 2-18: Bags for “Meeting in a Bag” .. 2-27

Figure 3-1: “Trend” Residential Development .. 3-2
Figure 3-2: “Community Choices” Residential Development 3-2
Figure 3-3: Trend Map 2006 Plan .. 3-4
Figure 3-4: Community Choices Map 2006 Plan .. 3-5
Figure 3-5: Age/Gender Ada/Canyon ... 3-19
Figure 3-6: Age/Gender Canyon County ... 3-19
Figure 3-7: Age/Gender Ada County ... 3-19
Figure 3-8: Transportation Choices ... 3-20

Figure 4-1: Total New Construction Permits Issued by Year 4-2
Figure 4-2: Housing Affordability ... 4-3
Figure 4-3: Housing + Transportation Affordability .. 4-3
Figure 4-4: Boise-Nampa Unemployment Rate .. 4-5
Figure 4-5: Truck Flows Map ... 4-6
Figure 4-6: UPlan Land Use Model ... 4-7
Figure 4-7: 2030 Population Density ... 4-9
Figure 4-8: 2010 Employment Density .. 4-10
Figure 4-9: 2035 Employment Density .. 4-11
Figure 4-10: Stakeholder Benefits ... 4-12
This page intentionally blank.
Communities in Motion 2035

EXECUTIVE SUMMARY

DEFINING THE VISION

We envision a Treasure Valley where quality of life is enhanced and communities are connected by an innovative, effective, multi-modal transportation system.

Communities in Motion is the regional long-range transportation plan for Ada and Canyon Counties, Idaho, and includes high level information for Boise, Elmore, Gem, and Payette Counties as well. It provides regional transportation solutions for the next 20-plus years for southwest Idaho. Communities in Motion evaluates projected population and employment growth, current and future transportation needs, safety, financial capacity, and preservation of the human and natural environment.

Communities in Motion offers a vision for land use, known as “Community Choices,” and addresses:

- How land use affects transportation
- How investments in transportation influence growth
- What the transportation system is supposed to achieve
- How transportation projects are selected
- How transportation projects serve regional needs

In 2006, the Communities in Motion planning process identified a broad vision, community goals, objectives, and measurable tasks. This was accomplished by engaging people early in the process. Over 2000 residents, stakeholders, and elected officials participated in developing the plan.

Of those who reviewed and commented on the plan, 72 percent supported the key recommendations.
The Community Planning Association of Southwest Idaho (COMPASS) is responsible for producing the region’s long-range transportation plan. COMPASS outlined these guidelines when beginning the planning process:

- Projects from prior plans would not be carried over automatically.
- Projects would be selected by a rational evaluation process.
- Land use preferences would start the planning process.
- Regional perspectives and broad corridor-level projects would be the focus.
- Public transportation would be considered in a meaningful way.
- The plan would be financially constrained and include only projects that could be funded with existing levels of revenue over the next 25 years.

Communities in Motion supports:

- Balance between housing and jobs
- Choices in housing types
- Choices in transportation and shorter commuting distance
- Connectivity through higher densities
- Preservation of open space and farmland

Communities in Motion Goals:

Connections

Provide options for safe access and mobility in a cost-effective manner in the region.

Coordination

Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment

Minimize transportation impacts to people, cultural resources, and the environment.

Information

Coordinate data gathering and dispense better information.
Growing Our Region

Community Choices encourages growth inside city “areas of impact,” and emphasizes higher densities and mixed-uses with jobs, shopping and services closer to housing. If growth and development do not follow Community Choices and instead follow the current pattern (known as “Trend”), it will be possible to drive through southwest Idaho and not be able to tell when you’ve left one town and entered another because residential growth will have blurred the boundaries.

More and more people commute to Ada and Canyon Counties from Gem, Payette, Boise and Elmore Counties every day. For example, more than half of Boise County’s working population and 37 percent of Gem County’s commuted to Ada and Canyon Counties in 2000 according to the U.S. Census, and the percentages keep growing. Other travel pressures exist as well. Recreational travel affects Boise County, while Payette County faces heavy truck traffic along U.S. 95.

But the traffic problems of today will pale in comparison to the problems in 2035, due in part to population growth. In 2000, the two-county region had slightly over 400,000 residents; by 2035, the population may swell to over 1 million. The location of jobs to support this growing population will be critical. Growth and what it means for the future of our region is the reason for *Communities in Motion*.

The *Communities in Motion* planning process looked at how the region might develop. Using input from public workshops, local governments, stakeholders, and elected officials, COMPASS developed the growth scenario — *Community Choices* — on which the plan is based.

Community Choices is still the preferred scenario for the 2010 update and offers a vision for a more cost-effective, multi-modal transportation system. To support this vision, funding for public infrastructure must be directed to areas of growth consistent with those outlined in *Communities in Motion*. If done, new growth patterns will mean that our region will:

- Consume less land
- Save more open space
- Offer more housing choices
- Foster the use of public transportation
- Cut one million daily vehicle miles of travel
- Ease traffic congestion
- Reduce fuel consumption
Designing the Future

Communities in Motion identifies the need for roads and transit for the region through 2035. With an anticipated population of over 1 million in 2035, and even with significant investment, the roadway system will still be over capacity. Just five percent of the roads were over capacity in 2006. A road’s capacity is related to traffic volumes and effects on travel time and delay for users: as a road nears its maximum capacity, travel times increases sharply. For example, consider travel time on I-84 at 5:30 am in comparison with travel time at 7:30 am. As volumes increase, travel speeds become more erratic, meaning stop-and-go conditions. Without this investment, the system will be over capacity even more.

Communities in Motion recommends a transit system more than ten times the size of the system today. The state of Idaho, however, neither provides funding for transit nor an option for communities to tax themselves to pay for expanded transit, so this expanded transit system is unfunded in the plan. Getting the funding for transit is a high priority for implementation.

Roadways

Roadway improvements identified in *Communities in Motion* focus on regional corridors. This focus means *Communities in Motion* does not include “minor” improvements such as intersections, traffic signals, and shorter-length roadway projects. Many of the corridors cross multiple jurisdictions and several of these roadways connect county to county. Each corridor is described in Chapter 5 and includes:

- Regional importance
- Characteristics and use
- Recommendations to meet *Communities in Motion* goals
- Land use decisions required to implement *Communities in Motion* goals (actions needed to occur to preserve the corridor for the future improvements)
- Opportunities and challenges
- Past, current, or programmed improvements
- Recommended investments in the funded portion of *Communities in Motion*
- Additional desired improvements (illustrative) or other actions needed in the future—perhaps beyond 2035

Communities in Motion does not preclude local governments from approving development that is not consistent with the location, nature, and amount of growth shown under the Community Choice scenario. Public funding, however, would not be available for transportation infrastructure to serve such growth.
The needs for an optimal transportation system simply outweigh the amount of money the region has available over the next 20-plus years. Financial assumptions resulted in the decision to move many corridors labeled as “funded” in 2006 from the “funded” category to “unfunded.” These changes in funding status are not related to the prioritization of the corridors themselves. Changes were based on a conservative approach: corridors with substantial existing funding commitments, via a capital improvement plan or other budget document, were deemed as “funded.”

The corridor improvements shown in the following tables are subject to amendment by the COMPASS Board based on new financial situations. Projects, including new transit services, shown as unfunded may be moved into the funded list if more dollars are provided via local, state, or federal actions over the next four years.

Ada and Canyon Counties – Funded Corridors

In Alphabetical Order

<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>Funded Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amity Road: Southside Blvd.-Cloverdale Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$67,528,000</td>
</tr>
<tr>
<td>2</td>
<td>Cloverdale Road: Lake Hazel Road-Chinden Blvd. Widen from two lanes to five lanes. Includes widening of overpass at I-84.</td>
<td>Funded</td>
<td>$71,729,000</td>
</tr>
<tr>
<td>3</td>
<td>Fairview Avenue: Meridian Road-Orchard. Widen from five lanes to seven lanes.</td>
<td>Funded</td>
<td>$53,359,000</td>
</tr>
<tr>
<td>4</td>
<td>Franklin Road: Idaho Center Road-Linder Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$34,740,000</td>
</tr>
<tr>
<td>5</td>
<td>I-84: Garrity Interchange-Meridian Interchange. Widen from four lanes to eight lanes. Includes reconstruction of Garrity interchange and existing over/underpasses.</td>
<td>Funded</td>
<td>$286,044,000</td>
</tr>
<tr>
<td>6</td>
<td>Bowmont Road-a three-mile section. Funding shown is only to construct a two-lane section</td>
<td>Illustrative</td>
<td>$7,807,000</td>
</tr>
<tr>
<td>7</td>
<td>Meridian Road: Waltman Drive - Ustick Road. Complete corridor improvements to five lanes. Includes partial couplet involving Main Street and Meridian Road.</td>
<td>Funded</td>
<td>$16,524,000</td>
</tr>
<tr>
<td>8</td>
<td>Ten Mile Road: Lake Hazel - Chinden Blvd. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$51,941,000</td>
</tr>
<tr>
<td>9</td>
<td>Ustick Road: Caldwell/Nampa Blvd.-Curtis Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$134,275,000</td>
</tr>
</tbody>
</table>

Total: $723,947,000
Ada and Canyon Counties – Partially Funded Corridors
In Alphabetical Order

<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>Funded Portion</th>
<th>2009 Cost</th>
<th>Programmed or Planned Funding</th>
<th>Unfunded Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I-84: Cole/Overland Interchange-Isaacs Canyon Interchange. Widen from four lanes to eight lanes. Includes interchange reconstruction at Orchard, Vista, Broadway and Gowen.</td>
<td>Funded</td>
<td>Orchard Interchange Vista Interchange Vista - Broadway widening</td>
<td>$381,228,000</td>
<td>$136,151,000</td>
<td>($245,077,000)</td>
</tr>
<tr>
<td>2</td>
<td>I-84: Exit 29-Garrity Interchange. Widen from four lanes to six lanes. Includes reconstruction of Franklin and Nampa Blvd. interchanges and existing over/underpasses.</td>
<td>Funded</td>
<td>Franklin Blvd – Garrity</td>
<td>$668,514,000</td>
<td>$286,044,000</td>
<td>($382,470,000)</td>
</tr>
<tr>
<td>3</td>
<td>Lake Hazel Road: Happy Valley - Eisenmann Road (including Gowen Road Realignment)</td>
<td>Funded</td>
<td>Locust Grove to Pleasant Valley - construct to 5 lanes</td>
<td>$135,589,000</td>
<td>$45,300,000</td>
<td>($90,289,000)</td>
</tr>
<tr>
<td>4</td>
<td>Linder Road: Kuna Mora Road-Ustick Road. Widen/construct to five lanes. Includes a rail crossing in Kuna and an overpass at I-84.</td>
<td>Unfunded</td>
<td>Franklin to Chinden – Construct</td>
<td>$100,876,000</td>
<td>$28,000,000</td>
<td>($72,876,000)</td>
</tr>
<tr>
<td>5</td>
<td>Linder Road: Ustick Road-Beacon Light Road. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>Franklin to Chinden – Construct</td>
<td>$92,400,000</td>
<td>$52,400,000</td>
<td>($40,000,000)</td>
</tr>
<tr>
<td>6</td>
<td>SH 16: Ada/Gem line-I-84. Construct limited access highway with interchanges and overpasses at SH-44, US 20/26, Ustick, Franklin and I-84. Other interchange and overpass locations would be evaluated.</td>
<td>Funded</td>
<td>SH 44 to US 20/26 - construct to 4 lanes with river crossing</td>
<td>$314,688,000</td>
<td>$119,457,000</td>
<td>($195,231,000)</td>
</tr>
<tr>
<td>7</td>
<td>SH 44 (State Street): SH 55 (Eagle Road) to downtown Boise (Multi-Modal Center)</td>
<td>Funded</td>
<td>Glenwood to 36th Street - construct to 7 lanes</td>
<td>$57,041,000</td>
<td>$36,700,000</td>
<td>($20,341,000)</td>
</tr>
</tbody>
</table>

Total

$1,750,336,000 $704,052,000 $2,454,388,000
Ada and Canyon Counties – Unfunded Corridors
In Alphabetical Order

<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>2009 Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beacon Light Road Extension: Purple Sage Road-SH 16. Construct new two-lane road.</td>
<td>Unfunded</td>
<td>$4,033,000</td>
</tr>
<tr>
<td>2</td>
<td>Beacon Light Road: SH 16-SH 55. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$48,701,000</td>
</tr>
<tr>
<td>3</td>
<td>Black Cat Road: Franklin Road-Chinden Blvd. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$38,123,000</td>
</tr>
<tr>
<td>4</td>
<td>Cherry Lane: Middleton Road-Ten Mile Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$63,885,000</td>
</tr>
<tr>
<td>5</td>
<td>Greenhurst Road: Middleton Road-Happy Valley Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$34,740,000</td>
</tr>
<tr>
<td>6</td>
<td>Happy Valley Road (five-lane) – from Flamingo to Locust Lane</td>
<td>Unfunded</td>
<td>$40,907,000</td>
</tr>
<tr>
<td>7</td>
<td>I-84: Future SH 16 Interchange: (vicinity of McDermott). Construct new interchange with ramps to connect with Franklin</td>
<td>Funded</td>
<td>$95,762,000</td>
</tr>
<tr>
<td>8</td>
<td>I-84: Ustick Road Interchange. Construct new interchange.</td>
<td>Unfunded</td>
<td>$32,528,000</td>
</tr>
<tr>
<td>9</td>
<td>Kuna Mora - Bowmont Expressway Corridor</td>
<td>Funded</td>
<td>$290,000,000</td>
</tr>
<tr>
<td>10</td>
<td>McDermott Road: I-84-Lake Hazel Road (including RR overpass at Hubbard Road). Widen from two lanes to five lanes. Access management to preserve future expressway.</td>
<td>Unfunded</td>
<td>$45,019,000</td>
</tr>
<tr>
<td>11</td>
<td>Meridian Interchange</td>
<td>Funded</td>
<td>$35,000,000</td>
</tr>
<tr>
<td>12</td>
<td>Middleton Road: Greenhurst Road-SH 44. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$83,532,000</td>
</tr>
<tr>
<td>13</td>
<td>Robinson Road: Greenhurst Road-Cherry Ln. Widen from two lanes to five lanes north of I-84, three lanes south of I-84.</td>
<td>Unfunded</td>
<td>$48,792,000</td>
</tr>
<tr>
<td>14</td>
<td>SH 44: I-84-Ballantyne Road. Widen from two lanes to four-lane limited access highway. Includes a new alternate route around Middleton.</td>
<td>Funded</td>
<td>$108,773,000</td>
</tr>
<tr>
<td>15</td>
<td>SH 45: Deer Flat Road-Locust Lane. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$13,792,000</td>
</tr>
<tr>
<td>16</td>
<td>SH 55 (Eagle Road), I-84 to River Valley Street</td>
<td>Funded</td>
<td>$19,517,000</td>
</tr>
<tr>
<td>17</td>
<td>SH 55: Beacon Light Road-Brookside. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$1,822,000</td>
</tr>
<tr>
<td>18</td>
<td>SH 55: Sunnyslope curve to Karcher Interchange. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$58,420,000</td>
</tr>
<tr>
<td>19</td>
<td>SH 69 Connection: Kuna Mora Road-Kuna Road. Build new road parallel to the Union Pacific rail (north side) to connect SH 69 to Kuna Mora. Broaden to include potential of a rail crossing option to Kuna Mora.</td>
<td>Unfunded</td>
<td>$22,509,000</td>
</tr>
<tr>
<td>20</td>
<td>Three Cities River Crossing: SH 44-Chinden Blvd. Construct new roadway at four/five lanes and new bridge.</td>
<td>Funded</td>
<td>$105,359,000</td>
</tr>
<tr>
<td>21</td>
<td>US 20/26: Exit 29-Eagle Road. Widen from two lanes to four-lane limited access highway.</td>
<td>Funded</td>
<td>$264,036,000</td>
</tr>
</tbody>
</table>

$1,455,250,000
Transit

Communities in Motion supports transit, walking, and biking. Both fixed-guideway systems and a scheduled fixed-route service are options for transit. A fixed-guideway system can be light rail, commuter rail, streetcars, or bus rapid transit services, all of which offer higher-speed transportation on separate travel ways — a real benefit when the streets are congested.

Scheduled fixed-route services, such as a buses operating on specific streets, are important for linking into guideway systems as well as serving more local trips and lower density corridors.

The proposed system would need another $2.7 billion over the next 25 years to be implemented. The transit system in the Treasure Valley will not improve much beyond what we have today without a local funding source.

The proposed transit system would have:

- Fifteen minute frequency during peak hours
- Expanded service on evenings and weekends
- Commuter bus services expanded to Elmore, Payette, Gem and Boise Counties
- Rail or other fixed-guideway service between the cities of Caldwell, Nampa, Meridian, and Boise
- Bus rapid transit service between the cities of Eagle and Boise

To obtain local funds for transit, the Idaho Legislature needs to provide local governments the option to ask citizens to tax themselves – locally – to pay for the optimal system.
Finding the Money

There is not enough money to complete all the corridors included in the optimal transportation system. The region will have slightly over $6.2 billion available for roads and perhaps $1.4 billion for transit between 2010 and 2035, and most of it will be used for operations and maintenance. We need another $3.9 billion for roadways and $2.7 billion for transit, or $6.6 billion total for road and transit together.

What do these large numbers mean for a resident of our region? The total shortfall in 2010 could be met with additional revenues of less than $430 per household. Funding for transportation comes from three general sources: federal funds, state highway distribution account, and local funds. Funding is not equally available. In some counties, there are very few resources in place to build new major roadways or offer transit services.

Major Changes in This Plan

There are some major changes in this version of Communities in Motion compared to what was adopted in 2006. These include:

- Chapter 1 provides a broad introduction to Communities in Motion.
- Chapter 2 provides some background information on regional history and issues and discusses what has happened since 2006.
- Chapter 3 provides the goals and policies, most of which are unchanged from the 2006 plan.
- Chapter 4 contains information about new growth forecasted through 2035. While the overall preferred land use pattern remains Community Choices, population is forecasted to reach 1.046 million by 2035 versus the 825,000 forecasted for 2030 a few years ago.
- Chapter 5 discusses roadways and shows a number of roadway corridors that were deemed funded in 2006 and are unfunded or partially funded in this plan.
- Chapter 6 is a new section dealing with transportation choices—public transportation, walking, biking, and other modes.
- Chapter 7 is also new and discusses ways to make more efficient use of the current transportation system.
- Chapter 8 is new and presents an overview of environmental issues and strategies related to transportation.
- Chapter 9 is new and addresses security issues such as natural disasters in terms of their transportation issues.
• Chapter 10 is new and presents safety issues such as rail, bicycle, and other accident categories drawn from the Strategic Highway Safety Plan created by the Idaho Transportation Department.

• Chapter 11 discusses freight issues.

• Chapter 12 provides expanded information on transportation costs and financing.

• Chapter 13 addresses new issues dealing with sustainability.

• Chapter 14 presents the implications of building out the area’s comprehensive plans.

Some the new chapters are required under federal rules instituted after 2006, but the inclusion of issues such as safety, system security, and the environment into Communities in Motion is really sound planning. These are integral parts of transportation and the community. As discussed in the plan, truly sustainable communities consider resource consumption and environmental effects on future generations.

Putting Communities in Motion into Action

A plan is not a solution. It is a guidebook. Where do we want to be? How might we get there? What are the opportunities and costs? Implementing the plan is essential. Between now and the next update in 2014, COMPASS and its members will focus on putting the vision and goals for Communities in Motion into effect. If we fail to move forward with the plan, it means we are willing to accept current development patterns. What steps do we take to ensure a brighter future?

• Search and ensure funding streams

• Protect corridors for future needs

• Develop guidelines for how transportation routes function, look, and feel

• Refine how projects are selected

• Track changes in plans and ordinance and work with local governments to encourage a more compact and diverse pattern of development where appropriate

• Actively engage and encourage citizen involvement

The future community envisioned in Communities in Motion is a metropolitan area of at least 1.046 million people in Ada and Canyon Counties with another 150,000 people in the surrounding counties. The area will have more congestion, but well-designed streets, an effective transit system, and a mixture of housing and business can result in a vital future for southwest Idaho.
CHAPTER 1
INTRODUCTION

Metropolitan Planning

The Community Planning Association of Southwest Idaho (COMPASS) plays an important role in making decisions about future transportation needs in the Treasure Valley. COMPASS members consider environmental and economic factors that affect the quality of life for area residents when making decisions about transportation.

As an association of local governments working together to plan for the future of the region, COMPASS members set priorities for spending federal transportation dollars over the next twenty-five years. The agency conducts this work as the Metropolitan Planning Organization1 (MPO) for Northern Ada County2 and the Nampa Urbanized Area3. The federal government requires the formation of an MPO when an urban area reaches 50,000 people. COMPASS has served as the MPO for Northern Ada County since 1977 and the Nampa Urbanized Area since early 2003.

The Boise/Meridian urbanized area became a “Transportation Management Area” when the population exceeded 200,000 in 2000.

COMPASS Members

General Members

Ada County
Ada County Highway District
Canyon County
Canyon Highway District #4
City of Boise
City of Caldwell
City of Eagle
City of Garden City
City of Kuna
City of Meridian
City of Middleton
City of Nampa
City of Notus
City of Parma
City of Star
Nampa Highway District #1

Special Members

Boise State University
Capital City Development Corporation
Idaho Dept. of Environmental Quality
Idaho Transportation Department
Independent School District of Boise Valley Regional Transit

Ex Officio

Central District Health
Office of the Governor
Greater Boise Auditorium District

1 Metropolitan Planning Organization boundary map URL: http://www.compassidaho.org/documents/prodserv/maps/bi-county_uaE.pdf
2 Northern Ada County is the area north of the “Boise Base Line.” The invisible line runs across the county west to east approximately seven miles south of Kuna.
3 Nampa Urbanized Area is comprised of the cities of Nampa, Caldwell, and Middleton, and some of Canyon County. The U.S. Census Bureau designates urbanized areas.
This designation results in additional requirements for COMPASS to satisfy federal regulations, including preparation of a Congestion Management System.

The federal government requires that an MPO, such as COMPASS, prepare a regional long-range transportation plan for its planning area. *Communities in Motion* is the title given to the regional long-range transportation plan for Ada and Canyon Counties. *Communities in Motion* also provides information on regional transportation routes in the counties of Boise, Elmore, Gem, and Payette. The partnership with Idaho Transportation Department (ITD) in 2006 to create the original *Communities in Motion* plan enabled true regional planning in southwest Idaho. This update of *Communities in Motion* focuses on Ada and Canyon Counties only.

How many miles is it from southwest Idaho to...

- Portland = 430
- Salt Lake City = 340
- Sacramento = 550
- Denver = 830
- Seattle = 500

About the Area

Boise is the capital of Idaho, and is part of the largest metropolitan area in the state with an estimated regional population of 641,000 in 2008. This is 42% of the entire state’s population of 1.52 million. A superb transportation system – one that is efficient, versatile and sustainable – is essential to sustaining the vitality of the region.

Even though the region is the most populous in the state, there is still a sense of remoteness about southwest Idaho. Most everything a large city offers is available, although at a different scale. Seattle has the Mariners; Boise has the Hawks (A-level baseball). Denver has the Avalanche; Boise has the Steelheads (AA-level hockey). Portland has the Trailblazers; Boise has the Stampede (the Development League--just below the National Basketball Association). Sports fans support these vital minor league teams and often enjoy the smaller scale.

Southwest Idaho also offers cultural activities featuring exceptional talent. Professional theater, ballet, philharmonic, opera, and modern dance companies have tremendous following.

4 Detailed Census data for the six-county region by county is available from the Census web site at: http://factfinder.census.gov/servlet/DatasetMainPageServlet?_program=PEP&_submenuId=datasets_3&_lang=en
A wide variety of galleries support the visual arts, while museums offer exhibitions and education on historical and cultural topics. The region has a number of museums and cultural centers, including those that recognize Basque, Hispanic, and African American cultural influences in the state. Visitors will also find cultural organizations dedicated to visual art, hands-on science, military history, human rights, and zoology.

Outdoor activities such as skiing, bicycling, kayaking, hiking, hunting, and camping abound in the rural areas, and many golf courses exist throughout the region. To reach a city that offers larger-scale entertainment, museums, and popular shopping establishments, however, one must travel a great distance.

For example, to attend the nearest big-league professional baseball and football games, a major museum, or have multiple shopping opportunities, one would go to Seattle, Portland, or Salt Lake City, all a full-day drive.

These, with other features of the region such as parks, good schools, and low crime rates attract people from throughout the county.

Housing and Transportation

Much of this development does not include pedestrian connections to jobs, shopping, and service centers. Strong downtown areas exist in few of the region’s communities. Opportunities to alter the future exist—both for new development and redevelopment of existing areas. One national expert noted that by 2030, nearly half of the buildings in the United States will have been built since 2000 (Table 1-1).

Since 2006, when *Communities in Motion* was first adopted, there have been major changes in housing, growth and employment. Recognizing the current declines, there is still reason to expect that this region will experience growth as discussed in Chapter 4. The area's quality of life, a good business climate, abundant services and similar conditions are grounds to project continued growth.
Employment and Transportation

The metropolitan area had approximately 276,100 jobs in August 2006. As of February 2010, this had decreased to 245,800, with much of the loss in construction and manufacturing. Most of the jobs are located in Ada County. This “jobs/housing imbalance” ratio is discussed in Chapter 4. The imbalance is caused when people need to travel long distances from home to work. The transportation system works much better when jobs are located near housing and vice-versa, thus creating shorter commute distances.

As noted in Chapter 4, demographers expect an additional 225,000 jobs in the region by 2035. Communities in Motion anticipates that jobs will be spread more efficiently throughout the six-county region, thus creating the opportunity for people to live closer to where they work – creating better balance in jobs and housing.

The challenge facing this region, similar to many rapid growth areas around the U.S., is that new jobs may result in escalating housing prices and land values. Many workers, especially those with lower wages, may not be able to find affordable housing near their place of employment, thereby, driving up commuting costs and demands on existing transportation facilities. One example of this phenomenon is in Silicon Valley, near San Jose, California. Fueled by the technology boom in the 1980s and 1990s, housing costs spiraled upward, with fairly modest homes costing $1 million. This caused many workers to face commutes of up to two hours from surrounding communities. In turn, these workers displaced lower paid residents in those communities.

Table 1-1: Percentage of Housing

<table>
<thead>
<tr>
<th>Region</th>
<th>United States</th>
<th>Idaho</th>
<th>Ada County</th>
<th>Boise County</th>
<th>Canyon County</th>
<th>Elmore County</th>
<th>Gem County</th>
<th>Payette County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built Since 1990</td>
<td>17%</td>
<td>25%</td>
<td>34%</td>
<td>31%</td>
<td>32%</td>
<td>20%</td>
<td>24%</td>
<td>21%</td>
</tr>
<tr>
<td>Built Since 1980</td>
<td>33%</td>
<td>38%</td>
<td>48%</td>
<td>56%</td>
<td>42%</td>
<td>31%</td>
<td>33%</td>
<td>30%</td>
</tr>
<tr>
<td>Built Since 1950</td>
<td>78%</td>
<td>82%</td>
<td>89%</td>
<td>92%</td>
<td>82%</td>
<td>87%</td>
<td>77%</td>
<td>74%</td>
</tr>
</tbody>
</table>

To accommodate growth to 2030, I estimate that the U.S. will construct 50% more residential units and 90% more nonresidential space than existed in 2000...Assuming these projections hold, why should we be interested in them? They show that, for those who fear we cannot change current development patterns, there is hope.

5 US Census Bureau, Table H34, Year Structure Built. Universe: Housing units. Data Set: Census 2000 Summary File 3 (SF 3) - Sample Data
7 Jobs/Housing Imbalance – when people do not live near where they work, there is an imbalance in the jobs and housing ratio.
With low fuel prices, the cost of commuting is often not considered when making housing location decisions. Fuel went to $4 per gallon in 2008, dropped due to the economic slump, but is slated to increase. How will changing fuel pricing affect location decisions? For a commuter facing a 60 mile round trip each day, a one-dollar increase could amount to a $66 monthly increase in commuting costs. The “jobs/housing balance” concept addresses this issue. What happens to a community when its teachers, police officers, and mechanics can no longer afford to buy homes in the community where they work?

In addition to those who live in southwest Idaho, many people also pass through the region, particularly on Interstate-84 (I-84). This freeway is the major east/west route through southern Idaho, and carries people and products from the west coast to locations in the Intermountain West and beyond.

Trucks are often a major issue noted by the public. Studies commissioned by COMPASS concluded that of 6,500+ commercial trucks surveyed, through truck traffic was only 10% of the total traffic. Figure 1-1 shows that the major demand point is between the Wye Interchange and Eagle Road—five times the volumes just outside the urban area.

Assumptions

To develop *Communities in Motion*, planners used a set of assumptions to establish baseline information. For this purpose, an “assumption” takes a fact, notion or idea for granted; thus, the plan “assumes” certain things about the future. These assumptions for the year 2035 include:

- The Treasure Valley will experience high levels of growth. The economic and development slump that started in 2007 will end.
- Water will remain available.
- Most automobiles will continue to have gasoline/diesel engines, although they will be more efficient.
- Fuel prices will fluctuate, but will not rise beyond what many people are willing to pay.
- Fuel taxes will remain stable and will continue to be used for roadways.
- Residents in the Treasure Valley will use transit choices as they become viable.
- Until legislation for local funding for expanded transit services is approved, major expansion of the transit system cannot be funded.
Federal funding for both roadways and transit will remain stable for capital purchases through new iterations of the transportation bill. Any federal reductions for transit operating costs will be offset by local general revenues from the local governments within Ada County and Canyon County.

- Jobs will be dispersed throughout the region.
- Parking will become less available and more expensive.

A financial analysis prepared in 2009 estimated that the roadway shortfall could be as high as $3.9 billion through 2035, while the transit shortfall could be as high as $2.7 billion. The growth assumptions are discussed in greater detail in Chapter 4, while financial assumptions are laid out in Chapter 12. Financial assumptions resulted in the decision to move many corridors from the “funded” category to “unfunded.” These changes in funding status are not related to the prioritization of the corridors themselves. Changes were based on a conservative approach: corridors with substantial existing funding commitments, via a capital improvement plan or other budget document, were deemed as “funded.” The “funded” and “unfunded” designations are driven by two federal requirements:

- Plans must be fiscally constrained, meaning that only current and reasonably available funding sources can be included.
- Air quality evaluations that determine if emissions budgets for air pollutants are being met must be based only on those corridors and services that are funded.

Corridors shown as unfunded remain eligible for future funding, if new funding become available. The COMPASS Board can amend Communities in Motion to change the funding status of corridors and services as conditions warrant.

Elements

Community goals -- developed in public workshops, open houses, and other public comment opportunities throughout the planning process -- created the foundation of Communities in Motion. These goals are:

- Connections
- Coordination
- Environments
- Information
Two key elements -- “Community Choices” and Regional Corridors – link with the goals. The first element, **Community Choices**, is the scenario for land use and transportation that emerged from public workshops. The COMPASS Board approved the scenario in 2006 and continues to endorse it for the 2010 update. As such, the transportation investments in this plan are intended to support implementation of the Community Choices scenario. The name reflects **choice** in housing types (single family, multi-family, town homes, zero lot line homes, condominiums, and large lot) and in transportation modes (automobile, transit options, bike lanes, and walking paths).

The second element is **Regional Corridors**. With a much larger planning area than past plans, **Communities in Motion** analyzes transportation systems at the regional corridor level. The matrix on the following page (Table 1-2) links the goals and issues.

Communities in Motion, if followed, will result in preservation of open space, infill and redevelopment, choices in housing types that are currently not available, a much expanded transit system and other alternatives to the automobile, and jobs/housing balance.

Table 1-2: Matrix of Key Issues as Related to Goals

<table>
<thead>
<tr>
<th>Goals</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Housing/ Jobs Balance and Housing Choices</td>
</tr>
<tr>
<td></td>
<td>Transport Choices / Transportation</td>
</tr>
<tr>
<td></td>
<td>Connectivity Through Higher Densities</td>
</tr>
<tr>
<td></td>
<td>Preserve Open Space and Farmland</td>
</tr>
<tr>
<td>Connections - Provide options for safe access and mobility in a cost-effective manner.</td>
<td>High</td>
</tr>
<tr>
<td>Coordination - Achieve better inter-jurisdictional coordination of transportation and land use planning.</td>
<td>High</td>
</tr>
<tr>
<td>Environmental - Minimize transportation impacts to people, cultural resources, and the environment.</td>
<td>High</td>
</tr>
<tr>
<td>Information - Coordinate data gathering and dispense better information.</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Expectations

The region is planning for rapid growth over the next 25 years. To give a sense of scale, by 2035 the six-county area will likely have population and employment equal to three new Boise Cities or four new Canyon Counties, growing from the 2000 population of 504,000 to 1.046 million. Given this anticipated increase, the region faces challenges of meeting the needs of a future transportation system while preserving quality of life and open spaces – two areas of concern to both elected officials and local residents. The planning process analyzed these concerns, as well as many others.
Growth, however, can be greater—or less—than what is assumed in the plan. As noted in Chapter 14, a build out under the combined comprehensive plans just in Ada and Canyon Counties could result in almost three million people in the region. The reality is that no one can say for sure what this region will be like in 25 years. **But planning is not about forecasting; it is about laying out a vision of what we want the future to be.**

Communities in Motion offers a detailed summary of the transportation system and proposed improvements, a description of the process to create the plan, and results of the planning analysis. Links throughout the electronic document provide more technical and detailed information. *Communities in Motion* will be updated by September 2014, to meet the four-year update cycle mandated by the Federal Transportation Act, *Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users* (SAFETEA-LU).

New chapters on safety, system security, and the environment are required under federal rules instituted after 2006, but the inclusion of such issues into *Communities in Motion* is really sound planning. These are integral parts of transportation and the community. As discussed in the plan, truly sustainable communities consider resource consumption and environmental effects on future generations.

Note that SAFETEA-LU was slated to expire in 2009. Federal priorities on the economy, the housing crisis, health care, and the wars in Iraq and Afghanistan preempted the reauthorization. It is possible that a new transportation act will be approved within the life of *Communities in Motion*. If new requirements are part of the transportation act, COMPASS may need to amend the plan sooner than 2014. Changes in federal or state funding could also trigger an amendment.

As noted in Chapter 3, COMPASS will continue to prepare an annual performance monitoring report. This report tracks growth, transportation investments, transportation performance and policy changes tied to the goals and objectives espoused in *Communities in Motion.*

Sustainable development is development which meets the needs of the present without compromising the ability of future generations to meet their own needs.

~ *World Commission on Environment and Development*
CHAPTER 2

TAking SHAPE

A Region Takes Shape

Southwest Idaho offers a mix of landscape, natural resources, culture, and economy. The region’s broad swath of six counties includes a vast and remote desert of sagebrush and lava rock, mountain peaks that reach almost 10,000 feet, and crystalline rivers that provide water for sustenance and recreation. For much of its human history, the region has been lightly populated—relative to other areas in the country.

Native people lived along the Snake and Boise Rivers, and early emigrants crossed the region on the Oregon Trail. Julius Morrow, an Oregon Trail pioneer, who passed through the area in the autumn of 1864, commented on the landscape when he wrote:

When we first came in sight of Boise City and the valley, we were upon a hill seven miles distant, considerable timber exists along the banks of the river. There were ranches and fields of grain, some in shock and some standing ready for reapers. Such scenery to us is beautiful in the extreme, when compared to the hundreds of miles we have traveled over so barren and desolate.¹

Some pioneers stayed in the area, rather than traveling further west. Boise was founded in 1863 as an army post. In the fall of 1863 the town had 725 people; a year later the number reached 1,658. In 1864, Boise became the territorial capital. The discovery of gold in the Boise Basin in Boise County brought almost 19,000 miners to southwest Idaho. By 1864, Idaho City was the largest community in the territory, home to 20,000 miners and more than 250 businesses. In 1890, when Idaho became a state, Boise’s population had reached 2,300. Ten years later almost 6,000 people lived in the area.

The Hudson’s Bay Company established Fort Boise in 1834 near what is now the City of Parma, but abandoned it in 1855. During the Boise Basin and Owyhee gold rushes of 1862 and 1863, Canyon County provided highways to and from the mines. Its earliest permanent communities, founded along the Snake and Boise rivers in the 1860s, were farming centers developed to feed the mining population.

Arrival of the Oregon Short Line Railroad in 1883 stimulated the growth of the cities of Nampa, Caldwell, Parma, and Melba and soon became the territory’s most densely populated area. The county was created from a portion of Ada County by act of the legislature on March 7, 1891.

Settlers came to the region for gold and other precious metals. A census in 1870 showed that the majority of miners were Chinese. By 1888, the county was better known for its cattle, horse, and sheep industries. Young Basque men from the Pyrenees Mountains, between France and Spain, provided the labor for the sheep industry. Thus, many nations form the historical culture for the county.

Like today, the majority of the state’s population throughout the nineteenth and twentieth centuries lived in southwest Idaho. Yet, in 1900, the state had only two communities with more than 2,500 residents. Almost 100 years later, in 1990, only three cities in the state had 30,000 people or more (Boise, Pocatello, and Idaho Falls). Even in the late twentieth-century, “Idaho managed to keep one foot firmly planted in the country while sliding the other ever so tentatively toward the city.”

Throughout the twentieth century, economic instability of the state’s natural resource-based industries caused the population to rise and fall. Southwest Idaho was more resilient to these population swings, particularly later in the century, when an economy based on natural resources – lumber, mining, and agriculture (wood chips, mineral chips, potato chips!) – now included industries based on a new kind of chip…the electronic kind.

Hewlett-Packard built a plant west of Boise in the 1970s and Micron started business on the southeastern fringe of the city a decade later. Many other high technology firms have emerged throughout the area, from Boise to Nampa, and employ thousands of people.

Transportation and Development Patterns

The region’s terrain, hydrology, and climate have played a prominent part in the pattern of development. The “Treasure Valley,” a marketing term applied to an area with no specific boundary, is roughly defined by the mountains to the north, mountains and desert to the south, the eastern edge of Ada County to the east, and the western edge of Canyon County to the west with a deep gorge cut by the Snake River and the Bonneville Flood 20,000 years ago. Within these difficult environments lie more hospitable areas watered by the Payette and Boise Rivers. Early settlement occurred in the original Fort Boise site near Parma, but the fort relocated to what was to become the City of Boise. This new site was closer to the booming gold mines around Idaho City.

The City of Boise was nestled against the foothills, convenient to the Boise River and with ready access to the timber in the mountains. However, when the railroad was built in the late nineteenth century the Union Pacific rail company was unwilling to cover the expense of bringing the line down into the Boise River Valley. Instead it followed easier terrain through Kuna and created a rail center in Nampa. The rail presence and construction of irrigation canals led to a booming agricultural economy in Canyon County. Boise itself lacked direct passenger rail service until 1926, with the construction of the eastern portion of the Boise Cutoff.

The next major transportation investment came in the 1950s and 1960s with the construction of Interstate 84 (I-84). The original literature promoting an interstate called this section I-80 North and was coined the “Boise Bypass.” The region’s terrain again became an issue in determining the path of I-84, which veered south of the City of Boise, connecting with a spur-line, I-184, to downtown Boise. This alignment was fortunate for the Boise River itself. Rivers in other metropolitan areas were prime alignments for the new interstate highways, depriving the community of a wonderful natural amenity.

As population growth took off around 1990, developable land, water, and transportation facilities (section line roads intended for farm access) supported the westward development patterns that continue to this day. The difficult terrain and lack of water in the Boise Foothills have limited growth to the north, with mostly higher-end housing being built there. To the south and east of Boise City, roads, surface water, and good soils are scarce. So while the City of Boise is the largest city in the region, and thereby considered the “central” city, the pattern of growth has actually moved the population center farther west. Today the population center of Ada and Canyon Counties is downtown Meridian.

5 The Boise Cutoff is the section of the rail line between the City of Nampa and the City of Boise north of I-84.
Demographics

The juxtaposition between urban and rural lifestyles – a theme throughout the history of southwest Idaho – exerts pressure on competing land uses. The six-county areas population grew by nearly 40,000 people between 1980 and 1990, for a total of just under 350,000 (Figure 2-1). This small growth spurt foreshadowed what was to come in the 1990s.

Early in that decade only 0.3% of the state’s 53 million acres was urban…and that was predominantly in Ada County. This percentage grew by a tenth of a percent in the early 2000s.

By the early 21st century, the population for the planning area (Ada, Boise, Canyon, Elmore, Gem, and Payette Counties) reached 647,000, with more than 552,000 additional people predicted to live in the area by 2035. While growth has slowed dramatically since 2006, Census estimates indicate that the 2009 population of the region is 143,000 more than it was in 2000.

![Figure 2-1: Regional Growth](image)

An Organization Takes Shape: Community Planning Association of Southwest Idaho

Managing growth requires foresight, planning, and cooperation on a regional scale. The Community Planning Association of Southwest Idaho (COMPASS) is the regional planning agency that provides such service, specifically to conduct transportation planning in northern Ada County and the Nampa Urbanized Area. The history and need for this type of planning extends back over 50 years.

Following the end of World War II in 1945, the population of the urban area paralleled the growth of key industries and services. Examples include the expansion of Boise Junior College, the creation of new departments in state government, and construction of the interstate highway through Idaho. Locally grown businesses such as Albertsons, Simplot, Boise-Cascade, Ore-Ida, and Morrison-Knudson thrived. The regional growth stimulated the need for infrastructure planning.

In July 1958, the Boise Transportation Planning Organization was formed to review transportation planning activities in the Boise Metropolitan Area. Elected officials and appointed representatives of city, county, and transportation agencies served on the steering committee and collected data to assess future transportation needs. In 1964, the group became known as the Boise Metropolitan Transportation Study (BMTS) and developed a transportation plan for the Boise region.

In the early 1970s, Governor Cecil Andrus designated BMTS, in cooperation with the newly formed Ada Council of Governments (ACOG), as the Metropolitan Planning Organization (MPO) for the Boise Urbanized Area. In 1977, Governor John Evans designated the Ada Planning Association (APA, formerly ACOG) as the MPO for the Boise Urbanized Area with the goal to conduct urban transportation planning for the urban area.

The APA changed its name to the COMPASS in 1999 to recognize its new transportation planning role in Canyon County. COMPASS amended its “Joint Powers Agreement” to authorize the agency to work with any public agency in southwest Idaho, not just Ada County, for the purpose of regional transportation planning. In March 2000, several Canyon County governments became members of COMPASS, and, in May 2003, COMPASS became the official MPO for Canyon County, specifically the Nampa Urbanized Area (Nampa, Caldwell, and Middleton).

Changes continued for the organization as a result of population growth. With the results of the 2000 United States Census, the Boise Urbanized Area became a Transportation Management Area (TMA) because the population exceeded 200,000. This designation added the Idaho Transportation Department and (ITD) and Valley Regional Transit (VRT) as voting members of the COMPASS Board and required COMPASS to develop a Congestion Management Process. It also increased the stature of the MPO regarding on-going collaboration with ITD. This relationship was important for the development of Communities in Motion.

A Regional Long-Range Transportation Plan Takes Shape: Communities in Motion

The federal government requires that an MPO prepare a long-range transportation plan. Communities in Motion is that plan for Ada County and Canyon County and offers transportation solutions for the next 25 years. Federal legislation requires the MPO to work in cooperation with state transportation departments and public transportation agencies in carrying out a “continuing, cooperative, and comprehensive” metropolitan planning process. These agencies determine their roles, responsibilities, and procedures governing cooperative efforts.

7 Congestion Management Process (CMP) is the systematic process for managing congestion. The CMP provides information on transportation system performance and finds alternative ways to alleviate congestion and enhance the mobility of people and goods, to levels that meet state and local needs. (URL: http://www.compassidaho.org/prodserv/cms-intro.htm)
8 Federal Legislation: 23 USC 134 (URL: http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=browse_usc&docid=Cite:+23USC134)
The problem facing our cities today is not the problems themselves. It is rather the inability to decide what to do about them.

John W. Gardner

The long-range transportation plan considers projected population growth and economic changes, current and future transportation needs, safety, quality of life issues, preservation of the human and natural environment, a realistic balance of transportation alternatives, and management of the transportation system.

The partnership between COMPASS, its members, local governments in the region, and ITD provided the opportunity to evaluate transportation modes and policies for maintenance, improvements, and development and enabled true regional planning in southwest Idaho.

In 2002, COMPASS completed *Destination 2025*, the long-range transportation plan for Ada County; it was updated in late 2004. The agency also prepared the first long-range transportation plan for Canyon County, *Moving People: 2025*, in early 2003. This work laid the foundation for the agency to build relationships with cities and highway districts in Canyon County. These plans identified transportation needs for agricultural purposes, for the rural towns that supported agriculture, for larger towns feeling the pressure of rapid urbanization, and for a growing Hispanic ethnic minority in Canyon County that needed attention for its unique transportation considerations.

In an effort to plan transportation systems to meet the needs of the growing communities in the Treasure Valley, COMPASS partnered with ITD in early 2004 to expand the planning area to include Boise, Elmore, Gem, and Payette counties in addition to Ada County and Canyon County. Success of the next long-range transportation plan, this time a six-county regional plan (Ada, Boise, Canyon, Elmore, Gem, and Payette), depended on “regionalism” and how well elected officials supported the concept.

A Change in Focus

The juxtaposition between urban and rural issues was again apparent, and the need for the valley to identify itself as a region became more real.

Long-range transportation plans developed over the past 20 years generally lacked underlying goals and did not address questions such as: What is the transportation system supposed to achieve? How do we know that one project is better than another? How does the project collectively serve regional needs?
Furthermore, there was no evaluation of how land use affects transportation issues or how transportation investments influence growth. Instead, past plans started with a single view of future growth and became a process of asking participants what transportation projects they wanted. The resulting lists were assembled into a plan. Without having an overall set of goals, how could success be measured?

To develop *Communities in Motion* in a new way, COMPASS outlined these guidelines when beginning the planning process in 2004:

1. Projects from prior plans would not be carried over automatically.
2. Projects would be selected by a rational evaluation process.
3. Land use preferences would start the planning process.
4. Regional perspectives and broad corridor-level projects would be the focus.
5. Public transportation would be considered in a meaningful way.
6. The plan would be financially constrained and include only projects that could be funded with existing levels of revenue over the next 25 years.

Public Outreach, Education, Involvement

COMPASS will seek representation from the wider community, will reach an underserved population, will offer a range of educational opportunities, and provide public input to planners and decision-makers in a timely manner. – Philosophy of Communities in Motion public involvement

Public and stakeholder involvement was crucial to the success of *Communities in Motion* and its public involvement plan in 2006 was flexible enough to respond to emerging issues and data.

Communities in Motion public involvement was tied to thematic phases that built and enhanced public participation throughout the planning process. These phases included support materials, public events such as presentations and workshops, media communication strategies, and public meetings.

Phase 1 included work with The Regional Transportation Task Force (RTTF). The RTTF, comprised of business leaders from Ada County and Canyon County, engaged business people in a series of meetings to learn about transportation needs, explore options to meet those needs, and develop recommendations for the future. The summary report of those discussions and the RTTF final report⁹ to the regional leadership are available online.

Phase 2, “Choice, Awareness, Participation,” began in October 2003 and ran throughout the project. Phase 2 asked the community to state their choices for growth, to become more aware of regional planning issues, and to participate in the planning process. Events in Phase 2 included “Community Cafés,” educational forums, and an in-depth review of other public involvement processes in the region to determine public transportation needs.

Phase 3, “Expanding, Collecting, Sharing,” started in June 2004. To accomplish the integration with ITD and the partnering counties, the agencies established the Plan Coordination Team comprising member agency staff, and the Steering Committee, represented by COMPASS Executive Committee and elected officials from the partnering counties.

COMPASS continued to gather additional public input by holding workshops, meetings, open houses, and speakers’ bureau presentations.

In November 2004 and February 2005, COMPASS held workshops for the general public and stakeholders to consider future options for transportation and land use, with the ultimate goal of developing effective strategies that support implementation of Communities in Motion. Almost 1,000 people participated in these workshops. Most participants supported changing development patterns rather than follow the current propensity for land use, known as “Trend.” Almost 60% wanted a new form of land use, which eventually became the scenario titled “Community Choices.” Participants also supported use of the existing Union Pacific rail line as commuter rail.

Participants also noted the importance of roadway design. They wanted roadways to be more visually and acoustically pleasing. For example, near neighborhoods and downtown areas, people wanted to see a boulevard or “main street” treatment to create a welcoming atmosphere, known as “context sensitive” design. Context sensitive design incorporates design elements to make the transportation project fit the land use.

10 The café process is an informal way to bring together the collective wisdom of people to confront community challenges—in this case, transportation planning.)
The February 2005 workshops focused on transportation systems – both roadway and alternative modes – for both preferred future land use as well as the funding needed to pay for improvements. Even with money a consideration, 58% of the maps created by workshop participants supported use of the rail line from Nampa to Boise; another 13% supported a rail system expanded to Caldwell.

While many favored an alternate freeway south of I-84 at the November 2004 workshops when costs were not a factor, the financial limits placed on transportation improvements deterred most from putting a full southern freeway system on their maps in February 2005. Even those who favored a stronger transit system continued to put new and expanded roadways on the maps.

Phase 4, “Reviewing, Evaluating, Adopting,” began in May 2005, and ended at the completion of the process in August 2006. Phase 4 asked the public to review and evaluate *Communities in Motion,* and requested the COMPASS Board to adopt the plan. Specific elements included open houses public meetings to present workshop results and obtain comment on the proposed transportation network, a special event to present the draft plan to the general public, and compiled evaluation results to determine effectiveness of public involvement.

A special event, “Communities in Conversation,” was the last opportunity for the public to provide input on the draft *Communities in Motion* plan during the comment period, which began April 18, 2006, and ended May 19, 2006. “Communities in Conversation” was the focus of the last two weeks of the comment period and was a new approach for gathering public comment about transportation issues in the region and for COMPASS in particular. Rather than presenting the draft *Communities in Motion: Regional Long Range Transportation Plan* to the community in a traditional open house setting, residents hosted meetings with their friends, peers, and/or colleagues to review and discuss the plan.

Meetings were held in homes, places of work, and community centers. Meeting hosts picked the date, time, and location of their meeting. The purpose of the meetings was to provide the public with an opportunity to review and provide input on the draft plan, try a new public involvement activity, and give people a way to channel their concerns about the future of the region.

A total of 600 people signed in as participants in these meetings, and many others submitted comments without attending a meeting.

Four major themes emerged from the public comments received:

- Strong support for a regional transit system with walking and biking paths.
- Strong support for the new growth scenario, particularly keeping jobs, services, and homes closer together.
- Willingness to support increased taxes, especially for public transportation.
- Support for improving regional corridors.
The result of the three-year effort was not only a radical departure in how the plan was developed, but also how the public was engaged in the process. For a region of this size to get 2,000 people involved in the planning process was impressive enough to gain several awards including:

- Project of the Year, Merit Award, 2007. International Association for Public Participation.
- National Award for Outstanding Achievement in Metropolitan Transportation Planning, 2007. Association for Metropolitan Planning.
- Second Place, Special Purpose Publication, 2007. Idaho Press Club. For the Communities in Motion Executive Summary Booklet.
- Excellence in Transportation Award, 2007. Idaho Transportation Department. Transportation Planning-Large Project.

The Current Update

As discussed later in the plan, the federal rules require that the regional plan be updated every four years in areas with more than 200,000 people or with air quality issues. Since this region meets the test on both elements, a new plan has to be adopted by August 2010. Much has changed in the region since 2006. Then the pace of growth seemed to be endless. In 2005, more than 11,000 residential building permits were issued (Figure 2-2). But even then the market was beginning to turn. By 2009 there were only 2,087 permits issued—less than 20% of the peak.

As you will see in the plan, the forecasts are still optimistic, with a forecast of a population of 1.046 million people in the two-county area by 2035. But as also will be discussed, the financial outlook is much grimmer than it was just a few years ago. What appeared to be reasonably cautious forecasts of revenue now appear to be far too rosy. This information is provided in great—perhaps overwhelming—detail in Chapter 12.
This update does not focus on growth patterns, although Chapter 4 will cover the forecasted growth and how it was allocated. Rather, this plan discusses cutbacks in the planned roadway corridors (Chapter 5) and continued need for resources for public transportation (Chapter 6). Other chapters present new information on environmental issues, operations and management opportunities to make more efficient use of the current system, safety issues, security issues such as flood evacuations, and freight. Many of these issues are now required elements of the plan under the 2005 federal transportation authorization law, *Safe, Accountable, Flexible, and Efficient Transportation Equity Act – a Legacy for Users* (SAFETEA-LU). SAFETEA-LU was approved in late 2005, but the rules interpreting how it should be applied did not come out until early 2007—nearly six months after *Communities in Motion* was adopted.

Implementation Since 2006

One of the major goals of *Communities in Motion*, or any transportation plan, is to make real improvements to the transportation network. However, major transportation projects are typically years, even decades, in the making. The illustration below (Figure 2-3) highlights the efforts that go into the planning process before a new road is constructed, bridge is built, or highway is widened. Several new roadway projects have been completed since the 2006 *Communities in Motion* was adopted. Those projects are visible to the public and increase efficiencies for roadway users. However, with each project, planning work was done to ensure that construction project was done most effectively, equitably, and economically as possible. These behind-the-scenes efforts, including corridor studies, growth and transportation system monitoring, and other studies, policies, and toolkits, are not directly improving the traffic but are an essential part of the bigger picture.
Completed Projects

Karcher Interchange
Park Center Bridge
Locust Grove Overpass
Franklin Road Interchange reconstruction
US 20/26 widening

Background Planning

Corridor Studies
- Highway 44
- US 20/26
- State Street
- Iron-Mora Road

Growth and Transportation System Monitoring
- Treasure Valley Annual Congestion Management System Report
- Development Monitoring Report
- Performance Monitoring Report

Policies
- Public Involvement Plans
- Transportation Improvement Program (TIP) Prioritization
- Complete Streets Policy

Toolkits
- Access Management Toolkit
- Communities in Motion Implementation Guidebook
- Mobility Management Development Guidebook

Other Projects
- Annual Public Education Series
- Public Outreach

Studies
- Treasure Valley High Capacity Transit Study
- Treasure Valley Truck Freight Travel Study
- High Volume Intersection Study

Figure 2-3: Planning Work Supports Transportation Construction Projects.
Corridor Studies

Corridor studies are a critical step in the comprehensive metropolitan transportation system planning process required to support decisions on substantial transportation investments. When the transportation plan calls for a major travel corridor to undergo significant changes, such as widening or a change in path, a “corridor study” is often conducted. This process serves as a bridge between the regional planning process and the more detailed project design and engineering phases. These studies evaluate regional travel corridors from a regional perspective and often include a regional vision for the highway, an implementation plan, an access management plan, an Environmental Impact Statement (EIS) and an analysis of alternate routes. Corridor studies are collaborative processes with land use agencies, highway districts, transit providers, neighborhood groups, and other stakeholders contributing. Examples of corridor studies are shown below. More can be viewed at a COMPASS web site at http://www.compassidaho.org/planning/studies-ongoing.htm.

Highway 44. Highway 44 lies in an important east-west corridor that connects Ada and Canyon Counties (Figure 2-4). Idaho 44 runs from the city of Eagle, through the downtown areas of Star and Middleton, and ends at I-84 in Canyon County. The highway is one of only three east/west highways carrying traffic between Ada and Canyon counties.

U.S. 20/26. U.S. 20/26 is one of the few east-west roadways in the Treasure Valley that runs from Caldwell to Boise (Figure 2-5).

Key components of these studies include:

- Corridor plans that identify future right-of-way needs and proposed lane configurations.
- Approved environmental documents that evaluate possible impacts.
- Access management plans that describe a set of design techniques control access to highways and other roadways.

More information on these two studies can be found at http://itd.idaho.gov/Projects/D3/.

State Street Study. This project will identify and prioritize specific transit and traffic improvements that will develop State Street into a premier transit corridor in the Treasure Valley (Figure 2-6). The current study builds upon the transit vision established during the State Street Corridor Strategic Plan Study in 2004.

Kuna–Mora Road Corridor. Identified in the 2006 *Communities in Motion* as a future regional corridor, Kuna–Mora Road was analyzed by Ada County Highway District along its eastern portion from Cloverdale Road to I-84 (Figure 2-7). The first phase determined the future traffic needs of the corridor, identified the corridor’s intended function, established a planning document for right-of-way preservation and policy-setting purposes, and determined the appropriate interchange and intersection locations and typical cross-sections for the roadway. A second phase to evaluate alignments west of Cloverdale was put on hold due to financial shortfalls. More information can be found at http://www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=79.

The above examples are just a few of the many studies underway in the region. Readers are urged to visit the COMPASS web site as noted above for more information.

Why are corridor studies important? Corridor studies allow transportation agencies to:

- Develop safety and congestion management strategies.
- Identify opportunities to accommodate alternative transportation modes, such as transit, cycling, and walking.
- Identify strategies to preserve right-of-way to save future construction costs and preserve corridor options.
- Prioritize proposed improvements to construct roadway improvements where they are most important.
- Assure consistency between the corridor plan and the land use comprehensive plans for the cities and counties to promote appropriate growth in appropriate locations.
Growth and Transportation System Monitoring

COMPASS tracks growth in the economy, jobs, building permits, and other indicators to determine the health of the area and the potential demand on the transportation system. The Treasure Valley annual Congestion Management Process Report highlights congestion and mitigation strategies, the Development Monitoring Report indicates growth impacts, and the Performance Monitoring Report tracks and evaluates how communities and government agencies are doing in implementing the Communities in Motion plan.

Northern Ada County was designated a nonattainment area for two primary pollutants: carbon monoxide in the 1980s, and coarse particulate matter (PM10) in 1990s. TMAs designated as nonattainment areas by the U.S. Environmental Protection Agency for carbon monoxide and/or ozone have an additional requirement under the CMP rules. CMPs in these areas must analyze any proposed transportation project that would result in a significant increase in capacity for single occupancy vehicles. The analysis must show that travel demand reduction and operational management strategies cannot fully satisfy the need for the proposed increase in single occupancy vehicle capacity.

Generally, a CMP should be designed to:

- Define and measure congestion.
- Identify and evaluate congestion and its causes.
- Identify and evaluate mitigation strategies.
- Define implementation responsibilities.
- Define an evaluation process.
- Be included in all aspects of transportation planning.

Performance Monitoring Report. One of the provisions of Communities in Motion was the development and implementation of a monitoring report that “summarizes progress toward achieving alternative transportation and desired land use objectives” (CIM Task 4.4.3). The Performance Monitoring Report is the annual report that evaluates factors to depict progress on meeting goals of the plan (Figure 2-8). The importance of the data grows as information is tracked across time. As data accumulate, the results will portray how the region is moving forward with Communities in Motion.

The 2009 Communities in Motion Performance Monitoring Report and previous monitoring reports can be found at: http://www.compassidaho.org/reports.htm

Figure 2-8: Walkable Neighborhoods Analysis Map in Performance Monitoring Report.

Why is growth and transportation system monitoring important? Monitoring reports were designed to help elected officials, staff, and others see where progress is being made and where it is lagging. The analysis will be used in decisions on transportation investments, future land use forecasts, and establishment of planning activities.
Studies

Treasure Valley High Capacity Transit Study. As the Treasure Valley continues to grow, high-quality transportation connections among the communities in the valley will become increasingly important. The Treasure Valley High Capacity Transit Study involves three related planning projects:

- Downtown Multimodal Center—a facility that would bring together transportation modes and services in downtown Boise. The center would serve as a hub for buses, streetcars, and regional high-capacity transit such as bus rapid transit or passenger rail and may include parking and retail space. The study portion of this project is complete and the federal government has accepted the “Environmental Assessment” to allow federal funding to be used for the project. Valley Regional Transit (www.valleyregionaltransit.org) is designing the facility and expects to start construction in 2011.

- Downtown Circulator—alignment of a streetcar to connect primary destinations downtown as part of an integrated regional transportation system.

- I-84 Priority Corridor—a plan for high capacity transit service for locations along the I-84 corridor within Ada and Canyon Counties. The Treasure Valley High Capacity Transit Study evaluated a range of transit options to serve the corridor and serves as a first step to position the corridor to potentially compete for a federal New Starts Capital Funding Grant. Several alignments were studied: Chinden Boulevard, Ustick Road, Fairview Avenue/Cherry Lane, Boise Cutoff Railroad, Franklin Road/ I-84/I-184, Overland Road, and Victory Road/Powerline Road (Figure 2-9).

Figure 2-9: High Capacity Transit Corridor Potential Alignments
Treasure Valley Truck Freight Travel Study. The purpose of this project was to collect data needed to analyze truck freight movements on major regional roadways. Data collected are being used by COMPASS to develop more reliable through-trip and truck-trip tables for the travel demand model. This project provided information on truck freight origin/destinations, type/weight of freight, and preferred travel routes in the six county Communities in Motion study area with emphasis on travel routes using congested interstates and principal arterials. Additional information on the Treasure Valley Truck Freight Travel Study is at: http://www.compassidaho.org/prodserv/specialprojects-tvfts.htm.

High Volume Intersection Study. The key objectives of the High Volume Intersection Study were to develop guidelines and recommendations for implementing innovative intersection designs in the region, to analyze ten intersections in Ada County for possible applications of innovative designs, and to spotlight a concept at each intersection. Each layout spotlight includes a drawing with lanes, performance and cost expectations, cost/benefit ratio, and likely right-of-way requirements. The recommendations of the High Volume Intersection Study report are suitable for use by highway agencies, land use agencies, and by other agencies throughout the COMPASS region. The High Volume Intersection Study is on the COMPASS website at: http://www.compassidaho.org/prodserv/specialprojects-hvis.htm.

Figure 2-10 (Continuous Flow Intersection) and Figure 2-11 (Median U-Turn with Bowtie) are examples of high volume intersection that could be used in the region.
Why are studies important? Studies take an in-depth look at the potential benefits, opportunities, and weaknesses of potential actions. Many times studies are required as part of federal funding mechanisms. The Treasure Valley High Capacity Transit Study is a requirement by the Federal Transit Administration which oversees the New Starts Program that typically provides up to 60% of the capital cost for selected projects. The Treasure Valley High Capacity Transit Study represents the first step for this region towards exploring the ability of the Treasure Valley corridor to compete for this federal funding.

The High Volume Intersection Study recommendations will help land use agencies establish standards for innovative intersection types, which will facilitate implementation of innovative intersections. Information from the reports will also be useful for updating the regional travel demand model, which forecasts future travel demands.

Policies

COMPASS policies establish how, when, and why decisions about the use of federal funds for transportation improvements. COMPASS has adopted several policies to engage stakeholders, expedite funding to needed projects, and promote streets for all users.

Public involvement plans. COMPASS maintains a broad policy of public involvement, so that staff may tailor the public involvement process/approach for each planning project (Figure 2-12). These public involvement plans are subject to review by public officials from affected areas, their representatives, representatives from affected constituent groups, and the general public. COMPASS Public Involvement Plans include:

- Public Involvement Policy: The planning process includes an active public involvement process that provides comprehensive information, timely public notice, full public access to key decisions, and supports early and continuing involvement of the public in developing plans.
• **Title VI Plan:** COMPASS is committed to compliance with Title VI of the Civil Rights Act of 1964 and all related regulations and directives. No person shall on the grounds of race, color, national origin, gender, age, or disability be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any COMPASS service, program, or activity. COMPASS also assures that every effort will be made to prevent discrimination through the impacts of its programs, policies, and activities on minority and low-income populations. COMPASS takes reasonable steps to provide meaningful access to services for persons with Limited English Proficiency.

• **Environmental Justice Consideration Area:** Presidential Executive Order 12898 (February 1994) amplifies Title VI by requiring every agency utilizing federal funds to review the positive and negative effects of federally funded projects on the surrounding populations. COMPASS identified several Environmental Justice Consideration Areas by using 2000 Census data to locate block groups with a 30% or more minority or low income population. For projects falling within these identified areas, COMPASS enhances outreach to minority and low-income populations as well as special consideration of project effects.

Transportation Improvement Program prioritization: The Transportation Improvement Program (TIP) is a short-range (3-5 year) capital improvement program (budget) of transportation projects consistent with federal regulations and area policies and strategies. The TIP lists all projects for which federal funds are anticipated, along with non-federally funded projects that are regionally significant. The TIP represents the transportation improvement priorities of the region and is required by federal law.

COMPASS produces a TIP for both the Northern Ada County and Nampa Urbanized Area and updates the document annually. The U.S. Department of Transportation (DOT) requires that all projects in the TIP be derived from an approved long range transportation plan, meet air quality requirements, and be financially constrained to the amount of funds that are expected to be available. The TIP shows the estimated costs and projected construction schedule of transportation projects. More information about the TIP is at: http://www.compassidaho.org/prodserv/transimprovement.htm.

11 Regionally significant projects are defined under *Rules for the Control of Air Pollution in Idaho*, Idaho Administrative Code (IDAPA 58.01.01) for the Department of Environmental Quality. At a minimum these projects include: all principal arterial highways; fixed guideway transit facilities; and any other facilities determined to be regionally significant through interagency consultation. Regionally significant projects must be evaluated for emissions in regions that are in non-attainment or maintenance status for any of a number of air pollutants. Source: On-line rule at http://adm.idaho.gov/adminrules/rules/idapa58/0101.pdf.
Complete Streets policy.

COMPASS adopted a “Complete Streets” policy in August 2009 to promote roadways with an appropriate balance for motorists, bicyclists, transit, and pedestrians of all ages and abilities. By considering all users of roads, communities can increase their safety, efficiency, and economic vitality (Figure 2-13).

Toolkits

Toolkits are “a collection of information, resources, and advice for a specific subject area or activity.” COMPASS has developed several toolkits for the use by highway districts, land use agencies, and other organizations to better manage and improve the transportation system. The Access Management Toolkit, Mobility Management Development Guidebook, and Communities in Motion Implementation Guidebook are examples of the toolkits that COMPASS has designed to promote best practices.

Access Management Toolkit

The principles of access management have been under-utilized on most of America’s roadways. Our roadways, which are arguably our largest public investment, are also often very dangerous facilities. While we constantly improve our streets and highways with better designs and safety features, access management tools and strategies are sometimes overlooked or overruled. This is unfortunate, since access management may provide the greatest opportunity to improve traffic safety and efficiency along new and existing roadways. The COMPASS Access Management Toolkit can be found at: http://www.compassidaho.org/documents/planning/studies/AcMgtTlkt_08Cover_Electronic.pdf.
The Treasure Valley can grow in a way that improves the quality of life and competitive advantage for the region. By the adoption of Communities in Motion in August 2006, the region has agreed on a common vision. However, stated in Communities in Motion, “a plan is not a solution.” Leadership in the region must act to put the regional plan into action, securing the legacy of growing to improve.

The Communities in Motion Implementation Guidebook provides more specific strategies for land use and transportation necessary to move this vision into action. This guidebook illustrates strategies of how to direct mixed uses such as jobs, shopping, services, and housing (Figure 2-14). The Communities in Motion Implementation Guidebook is online at: http://www.compassidaho.org/prodserv/reglrtranpl.htm.

Mobility Management Development Guidebook.

The mobility management program develops strategies and tools for better managing and delivering coordinated transportation services throughout the region, especially to older adults, individuals with disabilities, and those with low incomes. The program analyzes service coverage and gaps, compiles options to use new and existing technologies to enhance access and mobility, provides better tools to better integrate mobility management into local land use decisions, and develops performance measures to assess accessibility, efficiency and effectiveness of transportation services.

The Mobility Management Development Guidebook is online at: http://www.compassidaho.org/prodserv/mobility.htm.
Why are toolkits important? Many roadway improvements are permanent. They become part of the built environment for decades, help shape existing communities and future growth, and impact quality of life of communities by affecting commute times, neighborhood cohesion, air quality, economic conditions, and more. Doing things right is critical. These toolkits provide best practices and provide additional information to decision makers regarding how communities can and should look in the future.

Other Projects

Annual public education series. COMPASS sponsors a public education series to enhance the discussion about transportation, land use, and communities (Figure 2-15). Over the past several years, the education series has hosted presentations from renowned speakers on walkable communities, access management, context sensitive solutions, mobility coordination, transportation funding, revitalizing transportation corridors, and more. The presentations are well attended by planners, elected officials, and members of the general public.

Public Outreach

Public outreach on Communities in Motion is a continual process and not limited to the update or “official” opportunities for comment. Between adoption of the plan in 2006, and spring 2009, when the update process started, COMPASS gave numerous presentations and attended outreach events throughout the valley where staff shared the concepts contained in Communities in Motion and received feedback on those concepts.

COMPASS has been conducting outreach specific to the plan update and soliciting comment on issues relevant to the update since spring 2009. A key element of this outreach was an effort to “bring it to the people”; that is, to reach out to individuals on their own turf, such as at club meetings, rather than relying on them coming to us. Specific elements of this outreach are described below.

Presentations

Between May 2009, and June 2010, COMPASS staff gave 16 presentations to community groups specifically discussing the 2010 update of Communities in Motion. The audiences included workplace “brown bag” lunches, Kiwanis clubs, neighborhood associations, chambers of commerce, Boise State University classes, and more. Approximately 515 people attended these presentations.
Focus Groups

Some populations tend to be under-represented in public outreach processes. To help ensure all people were included in the outreach process for the update of *Communities in Motion*, COMPASS hosted focus groups primarily targeting populations who are frequently missing at typical public meetings. The focus groups were coordinated with the assistance of individuals already working with these populations, and whenever possible the focus group meetings were held at the time and place of a regularly scheduled meeting for that group. For example, COMPASS staff met with teen and young adult refugees during a meeting of a refugee leadership club and met with parents of young children during a meeting of a mothers group at a church. A total of 105 individuals participated in these focus groups, which occurred between July 2009 and February 2010. The groups consisted of:

- Refugees
- Parents of young children
- Retirees
- People with low incomes
- Individuals with disabilities
- College students
- Rural interests
- Urban Land Institute members

Open Houses – Fall 2009

In October 2009, COMPASS held three open houses to invite all members of the public to learn about the update of *Communities in Motion* and comment on their transportation priorities (Figure 2-16). Open houses were held in Meridian, Nampa, and Boise, from 4:00 p.m. – 7:30 p.m. on three different evenings. COMPASS staff answered questions and provided information and interactive displays on transportation financing, environmental issues, transit, modeling/forecasting, and other issues relevant to *Communities in Motion*. Forty-six individuals attended these open houses. Three additional open houses were held in conjunction with the spring 2010 public comment period. These are discussed under “Public Comment Period – Spring 2010” below.
Stand-Alone Display

In keeping with the theme of reaching out to people where they already are, COMPASS developed a stand-alone display and placed it at different public venues throughout the valley between September 2009 and May 2010 (Figure 2-17). In general, the display was placed in each location for a one-month period. Placed with the display were COMPASS brochures, copies of the 2006 Communities in Motion summary, a short survey (see below), and contact information for questions. The display was placed in the following locations:

- September 2009: Idaho Power lobby, Boise (1 week)
- October 2009: Meridian City Hall, Meridian
- October 2009: Hewlett Packard campus, Boise (posters)
- November 2009: Caldwell City Hall, Caldwell
- December 2009: Boise Airport, Boise (1 day; for Leadership Boise class)
- January 2010: Syringa Bank, Middleton
- February 2010: Star Branch Library, Star
- March 2010: Eagle City Library, Eagle
- April 2010: Kuna City Library, Kuna

Community Events

In addition to the stand-alone display, COMPASS participated in 14 community events, ranging from the May in Motion alternative transportation celebration to the Idaho Green Expo to a Cinco de Mayo celebration to transportation-related open houses and events sponsored by COMPASS member agencies. At each event, COMPASS staff answered questions and discussed the plan with event visitors and provided a display and take-home information on Communities in Motion.

Survey

From May 2009, through April 2010, COMPASS surveyed valley residents about their transportation priorities and their willingness to pay additional taxes to fund those priorities. Individuals could take the survey online (http://www.surveymonkey.com/s/X88MYYS) or hard copy. Online surveys were advertised through emails and on the COMPASS web site. Hard copy surveys were distributed at community events, presentations, and the unstaffed display (all described above). In addition, participants in the focus groups and October 2009 open houses were asked the same two questions; their responses are included with survey results. Including focus group and open house participants, 843 surveys were completed. Results are shown in Table 2-1, below.
Table 2-1. Public Survey Questions and Answers (n = 843)

Question 1: There isn't enough money to pay for all of the transportation-related projects that are needed or wanted in the Treasure Valley. If it were up to you, what types of projects do you think should receive the highest priority? Please check the TWO you think should be given top priority.

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain current roads and bridges (e.g., fix potholes)</td>
<td>19%</td>
</tr>
<tr>
<td>Expand transit (e.g., more buses, add streetcars or a train) (Requires a different type of funding than is now available)</td>
<td>33%</td>
</tr>
<tr>
<td>Improve current roads and bridges (e.g., widen roads)</td>
<td>13%</td>
</tr>
<tr>
<td>Add or improve walking and biking paths and lanes</td>
<td>22%</td>
</tr>
<tr>
<td>Build new roads and bridges</td>
<td>3%</td>
</tr>
<tr>
<td>Use technology to better manage traffic to reduce congestion</td>
<td>10%</td>
</tr>
</tbody>
</table>

Question 2: Would you be willing to pay more in taxes to help pay for the types of transportation projects you chose in question #1?

- Yes: 83%
- No: 17%

Public Comment Period: Spring 2010

COMPASS solicited public comment into the draft *Communities in Motion* update from May 10 through June 18, 2010. In total, over 200 comment forms (hard copy and online) were returned, in addition to more detailed emails/letters from the public and member agency comments. The elements of the public comment period are outlined below, as is a general discussion of comments received.

Public Events. COMPASS participated in four public events in conjunction with the spring 2010 public comment period: Cinco de Mayo (Caldwell), Idaho Green Expo, May in Motion Alternative Transportation Celebration, and Planning in the West (all Boise). COMPASS staffed a booth with information on the update at each of these events. These events are also included in the total count of community events listed above. Two of these (Cinco de Mayo and Idaho Green Expo) occurred immediately before the public comment period officially opened, but COMPASS provided the same materials and opportunity to comment at these events as at others during the comment period.

Open Houses – Spring 2010. COMPASS held three open houses to discuss the updated plan with the public and to solicit feedback: Boise (May 10), Meridian (May 12), and Nampa (May 13). All open houses were extensively advertised and were held from 4:00 – 7:30 p.m.

Approximately 50 people attended the three open houses; few comment forms were completed and returned at the open houses, but several people took materials and information on where to comment online.
Meetings in a Bag. The primary method of receiving input into the draft plan update was through a “Meeting in a Bag” process, following the same general model as the 2006 “Communities in Conversation” process described earlier – COMPASS provides all materials necessary to host a public comment meeting (in a bag) and provides bags to citizens to host their own meetings (Figure 2-18).

COMPASS solicited Meeting in a Bag hosts through newspaper advertisements, a news release, an extensive email campaign, COMPASS committees, and at public events and presentations. In total 47 bags were distributed beginning May 10. Hosts were requested to hold their meetings no later than June 15 and return comment forms and related materials to COMPASS no later than June 18. Over 180 comment forms were received through the Meeting in a Bag process.

Advertising. COMPASS used print and radio advertising and news releases, coupled with electronic communications (email, COMPASS web page, Facebook) to advertise the open houses, solicit Meeting in a Bag hosts, publicize the public comment period, and generally raise awareness of COMPASS’ role in long-term planning. In total, COMPASS ran 46 newspaper advertisements (including legal notices), spread among the following newspapers:

- Idaho Statesman
- Idaho Press Tribune
- Kuna Melba News
- Valley Times
- Boise Weekly
- Idaho UNIDO (Spanish)

COMPASS also advertised on 107.1 FM and 94.9 FM during morning and evening rush hours with 10-second traffic report sponsorships and 60-second commercials.

Other. COMPASS provided all materials, including a copy of the draft plan and executive summary, summary handouts, and a comment form, online on its web site, on CD, and in hard copy. The hard copies were available at the COMPASS office and at libraries in Caldwell, Nampa, Meridian, and Boise.
Summary of Public Comments. Over 200 comment forms, emails, and letters were received from members of the public – mainly through the Meeting in a Bag process. A copy of the comment form and a complete list of public comments and responses to them can be found in Appendix A; comments from member agencies can be found in Appendix B. Quantitative results can be found in Table 2-2, page 29. A summary of qualitative comments is below.

In general, the public expressed support for improvements and new funding sources for both roads and transit, and expressed a willingness to pay more in taxes for those improvements. However, the additional amount people stated they were willing to pay in taxes is not enough to cover shortfalls (see Table 2-2). There were several written comments expressing a desire for more efficiency and accountability before, or if/when, taxes were raised. Several others indicated they were willing to pay more in taxes but only for certain projects or types of projects.

Just under half of the respondents agreed with the funded/unfunded project list. There were many recommendations for what corridors should move from unfunded to funded and vice versa (see bulleted lists below).

U.S. 20/26 (Chinden), State Highway 44 (State Street), and a rail corridor were noted most often as being necessary projects that needed funding. Bowmont Road and Ustick Road were mentioned most often as being elements that could be taken out of the plan; some people questioned Bowmont Road’s fit with the Community Choices scenario. Note that seven of the corridors listed below (noted in italics) appear on both lists.

Move from unfunded to funded/ add more funding (public comment, in order of number of times mentioned):

- US Highway 20/26 (Chinden)
- Rail
- State Highway 44 (State Street)
- State Highway 16
- Meridian Interchange
- Greenhurst Road
- Kuna-More Road
- Three Cities River Crossing
- Cherry Lane
- Lake Hazel Road
- I-84
- Fairview Avenue
- Happy Valley Road
- Cloverdale Road
• Ustick Road
• Eagle Road

Move from funded to funded/provide less funding (public comment, in order of number of times mentioned):

• Bowmont Road
• Ustick Road
• Fairview Avenue
• Three Cities River Crossing
• State Highway 16
• Amity Road
• Kuna-Mora Road
• Cloverdale Road
• US Highway 20/26 (Chinden)

Most people agreed with the Community Choices growth scenario, but others did cite a desire for less density.

Other common themes that emerged through public comment were the need for additional/better transit, alternative transportation, and bike/pedestrian facilities and the need for a local option tax (the comment form did ask questions concerning taxes, it did not specifically mention local option). Several people stated a desire to put more funding and effort into transit before putting more funding and effort into roadways.

Table 2-2. Quantitative Public Comment Results*

<table>
<thead>
<tr>
<th>Question</th>
<th>Number of Respondents</th>
<th>Quantitative Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>What prompted you to comment on this plan? That is, is there a specific concern, or a particular road or issue that interests you?</td>
<td>140</td>
<td>NA</td>
</tr>
<tr>
<td>How did you learn about this opportunity to comment?</td>
<td>220</td>
<td>Invitation to Meeting in a Bag: 41.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Email: 25.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radio Advertisement: 4.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPASS Web Site: 3.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Word of Mouth: 1.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Display/Booth: 1.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newspaper Advertisement: 1.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>News Story: 0.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 19.5%</td>
</tr>
<tr>
<td>Question</td>
<td>Number of Respondents</td>
<td>Quantitative Results</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Where did you receive this comment form? (Not asked on the online form.)</td>
<td>185</td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
<tr>
<td>Open House: 4.9%</td>
<td></td>
<td>COMPASS Office: 0.5%</td>
</tr>
<tr>
<td>May in Motion: 0.5%</td>
<td></td>
<td>Public Library: 0%</td>
</tr>
<tr>
<td>COMPASS Office: 0.5%</td>
<td></td>
<td>Idaho Green Expo: 0%</td>
</tr>
<tr>
<td>COMPASS Web Site: 0%</td>
<td></td>
<td>Cinco de Mayo: 0%</td>
</tr>
<tr>
<td>Other: 15.1%</td>
<td></td>
<td>Meeting in a Bag: 78.9%</td>
</tr>
</tbody>
</table>
Table 2-2. Quantitative Public Comment Results*

<table>
<thead>
<tr>
<th>Question</th>
<th>Number of Respondents</th>
<th>Quantitative Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes between 2006 and 2010 – Funded Projects: By law, only projects that can be paid for (funded) can be included in the planned transportation system. Because of rising costs without increased funding, many projects that were “funded” in 2006 had to be removed from the planned transportation system in 2010 because there is not funding for them, even though they are priorities. Given this constraint, do you agree with the changes that were made?</td>
<td>189</td>
<td>Yes: 49.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No: 20.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Opinion: 30.2%</td>
</tr>
<tr>
<td>Recognizing there is not enough money for everything, what different changes, if any, would you recommend?</td>
<td>80</td>
<td>NA</td>
</tr>
<tr>
<td>Growth Scenarios: The Communities in Motion update examines two different scenarios for growth and land use in the Treasure Valley:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Community Choices, which encourages more compact growth and high-density housing in existing communities; more open space between communities; and building housing, jobs, services, and shopping closer together.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Preservation, which assumes each community will grow to the maximum possible, based upon that community’s comprehensive plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While Communities in Motion examines both, the plan supports the “Community Choices” scenario, based upon extensive public input when the 2006 Communities in Motion plan was developed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do you support the “Community Choices” growth scenario? (Encourages compact growth and high density housing.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If “No,” what type of growth do you want to see in the Treasure Valley? (e.g., Less compact? More growth in undeveloped areas?)</td>
<td>21</td>
<td>NA</td>
</tr>
<tr>
<td>Please provide any additional comments about the draft plan.</td>
<td>61</td>
<td>NA</td>
</tr>
</tbody>
</table>

Individual written comments can be found in Appendix A.
CHAPTER 3

DEFINING THE VISION

Where Do We Want to be in 2035?

Planning for the future – to 2035 and beyond – requires a regional commitment. Regions include urban, suburban, and rural communities. Southwest Idaho is a region comprised of unique cities and towns yet all rely on a regional labor force and count on a regional transportation system to move the people and materials involved in the regional economy. A regional infrastructure keeps the bridges, roads, and sewers intact and functioning.¹

Communities that act alone will not solve regional transportation demands. People work, shop, and attend recreation events throughout the region. And, with limited funding available, communities need to collaborate to ensure that transportation systems function effectively. Transportation improvements in one community make the regional system stronger.

Where do we want to be in 2035? The vision strategies, goals, and tasks developed for Communities in Motion are a guide to help us get there.

Vision, Goals, and Scenarios

Early in the 2004-2006 planning process, the COMPASS Board articulated the following vision for Communities in Motion: We envision a Treasure Valley where quality of life is enhanced and communities are connected by an innovative, effective, multi-modal transportation system.

The vision of Communities in Motion reiterates a commitment to regional planning and supports a belief that each community should keep a unique identity.

Goals for the plan were established several months later. Four broad goals emerged from a series of “community cafés” with local residents. A technical working group then examined the goals and crafted core objectives and tasks to reach the vision. When COMPASS and the Idaho Transportation Department extended the planning boundaries in 2006 to include Boise, Elmore, Gem, and Payette Counties, the original goals remained as the underlying theme of what residents want for the region.

Trend vs. Community Choices

Public workshops in November 2004 and February 2005 resulted in a number of land use scenarios that examined the relationship between land use and transportation. The two final candidates for inclusion in the plan were “Trend” and “Community Choices.”

Trend

The Trend growth scenario was based on the general growth patterns of the region over the last several decades (Figures 3-1 and 3-3). This scenario describes a future that continues the current, relatively low density pattern of development throughout the region. Of the various scenarios, the Trend scenario consumed the most land and generated the highest amount of Vehicle Miles of Travel (VMT).

Community Choices

The Community Choices scenario blended two of the more popular workshop scenarios, and was updated in March 2005 and April 2005, to reflect emerging land development (Figures 3-2 and 3-4). The amount of growth reflected in residential subdivisions under consideration at that time cut into the growth that could be assigned to the desired, more compact and diverse land use pattern.

Community Choices did far better than Trend in meeting goals for Communities in Motion and met the desires most commonly expressed by the workshop participants (Table 3-1). Community Choices supports:

- Growth into the areas of impact, which reduces the need to consume farmland and open space.
- A greater diversity of housing and more of that housing near jobs and services. More townhomes, patio homes, and apartments will be provided near planned public transportation services.
- A more compact growth pattern that will more likely support transit, walking, and biking. Some of the increased density would occur from the greater diversity of housing types, but some would also come from decreased lot sizes for single-family housing. Lots of less than 5,000 square feet can attain the needed density with careful design.

Communities in Motion – Page 3 - 2 September 2010
A future growth pattern that brings homes, jobs, and services closer together to reduce the need to travel and to encourage use of alternative travel modes such as walking and biking.

<table>
<thead>
<tr>
<th>Trend</th>
<th>Community Choices²</th>
</tr>
</thead>
<tbody>
<tr>
<td>125,400 acres</td>
<td>42,200 acres</td>
</tr>
<tr>
<td>72% single family</td>
<td>55% single family</td>
</tr>
<tr>
<td>20% new homes at transit density</td>
<td>52% new homes at transit density</td>
</tr>
<tr>
<td>20.7 Million Daily Vehicle Miles of Travel</td>
<td>19.6 Million Daily Vehicle Miles of Travel</td>
</tr>
</tbody>
</table>

This table compares the two scenarios. Both scenarios provide for the same amount of growth.

The growth depicted in the Community Choices land use scenario is a broad vision to guide investment decisions by COMPASS and its member agencies in seeking to provide a cost-effective, multi-modal transportation system. As such, investments will be directed to areas of efficient growth consistent with Community Choices. This does not preclude development being approved by local governments that is not consistent with the location, nature and amount of growth shown under Community Choices.

² These estimates were based on the 2006 projected growth of 825,000 people by 2030. Chapter 4 provides the new projections and allocation information through 2035. The 2035 growth is based on honoring the Community Choices principles while recognizing the development that has occurred since 2006.
Guiding Principles for Land Use

During 2004-2006, COMPASS worked closely with the *Blueprint for Good Growth* project in Ada County to identify “guiding principles” for land use. These guiding principles help make the transportation goals a reality by better linking land use with transportation. Since land use decisions are under the governance of member agencies, their support of the principals and goals help ensure implementation of the preferred scenario, Community Choices.

Performance Monitoring Report

One of the recommended products in the 2006 plan was for COMPASS to report annually on the progress of Community Choices throughout the region in the *Communities in Motion Performance Monitoring Report*. This report includes information about how much progress the region is making towards the goals and objectives in *Communities in Motion*, as well as the Community Choices land use scenario.

Definitions

The following strategies/summary principles, goals, objectives, and tasks provide the “road map” for the destination – the *Communities in Motion* vision. The COMPASS Board supported these elements and will use them to guide decision-making. Goals need to be accomplished as a region, while the objectives and tasks offer detail of how the region will complete and measure the goals (Table 3-2). COMPASS defines the following as:

- Plan for growth and share in benefits and costs
- Facilitate growth in cities and areas of impact to efficiently use public infrastructure
- Promote economic vitality and housing choices for all residents while retaining natural beauty
- Support a successful central city to maintain regional economic health and vitality
- Coordinate transportation and land use decisions to support travel choices

3 Focusing and sustaining the growth was the aim of the Ada County Land Use and Transportation Guide Plan, or *Blueprint for Good Growth* - an attempt to create efficient and beneficial development. The Ada County Consortium is a partnership of governments in charge of local land use and roadway planning. More details are available on the *Blueprint for Good Growth* website: http://www.blueprintforgoodgrowth.com

5 COMPASS Board adopted these definitions at the December 19, 2005 Board meeting.
Strategies – The decisions that guide a plan. The strategies will inform the policy level decisions by the COMPASS Board that guide the direction of the regional long-range transportation plan.

Goals – The broad and general goals of the plan. A goal is the end toward which effort is directed. There are four goals: Connections, Coordination, Environment, and Information.

Objectives – A more detailed breakdown of specific areas of the goals. Aim, goal, end of action – a strategic position to be attained.

Tasks – The specific ways in which the objectives are carried out. Tasks also describe who is assigned to do the work. These should be measurable.

Strategies/Summary Principles

The intent of Communities in Motion is to integrate land use and transportation planning. As such, it is intended to provide for an effective multimodal outcome, with land use patterns that support and encourage transportation alternatives.

Community Choices is the preferred growth and transportation scenario. Investment decisions regarding public funds will support implementation of this scenario.

1. The annual Communities in Motion Performance Monitoring Report will track comprehensive plan changes as well as building and subdivision activity.
2. An essential outcome of the plan must be the establishment of a regional transportation investment prioritization system to provide and maintain a safe, efficient, multi-modal transportation system.
3. A 50% split of funding between operations/maintenance and capital improvements is acceptable pending subsequent annual reviews to determine pavement, bridge, safety and equipment standards.
4. Maintenance and safety of the transportation system are highest priority when considering funding allocations.
5. The COMPASS Board recognizes the need to identify funding shortfalls and to secure new funding for a multi-modal transportation system as the highest priority.
6. A longer-term growth analysis is appropriate to consider issues beyond 2035.
7. Performance standards, including Levels of Service, may vary depending on a corridor’s context (e.g., a downtown area versus a suburban area).
Table 3-2: Goals/Objectives/Tasks

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
<th>Task 1.1.1</th>
<th>Task 1.2.1</th>
<th>Task 1.2.2</th>
<th>Task 1.2.3</th>
<th>Task 1.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>Provide options for safe access and expanded mobility choices in a cost-effective manner in the region.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 1.1</td>
<td>In order to integrate land use and transportation planning, the land use scenario titled "Community Choices," which emphasizes a more compact development with design elements that favor expanded effectiveness of public transportation, walking and biking, is hereby identified as the targeted scenario for implementation through this plan. Growth occurring outside the targeted growth areas under "Community Choices" will not be a priority for public funding of transportation systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.1.1 -- Develop a prioritization system for use in the Transportation Improvement Program to focus federal funds on those projects that best implement the desired outcomes for Communities in Motion in terms of land use patterns, travel choices and community vitality.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 1.2</td>
<td>Maintain the existing transportation infrastructure to provide an interconnected transportation system for the movement of people and goods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.2.1 -- COMPASS will develop criteria for scoring projects for the Transportation Improvement Program with the highest priority for projects that provide for maintenance, safety, existing system efficiency (such as Intelligent Transportation System), or preservation. These priorities are based on the 50% funding levels for operations and maintenance projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.2.2 -- COMPASS will identify major destinations (cities, regional centers, and economic activity centers) that are poorly served by the existing transportation system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.2.3 -- COMPASS will track conditions on the existing transportation system including maintenance and safety issues based on data from pavement, bridge and safety management systems provided by local agencies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 1.3</td>
<td>Expand capacity or increase efficiency of the transportation system with improvements to existing facilities and services or construction of new facilities and services to relieve congested corridors and traffic bottlenecks and to ensure a connected regional system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.3.1 -- Member agencies with transportation jurisdiction will identify project elements and designs that promote system connectivity, relieve congestion, and reduce bottlenecks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Only tasks are marked, since these are specific activities. Goals and objectives are general desired future conditions. Progress could mean a product has been created or substantial work has been done to implement the task. Note that some of these are on-going, such as performance monitoring.
Task 1.3.2
- Member agencies with transportation jurisdiction will identify project elements and designs that encourage use of high-occupancy vehicles or other alternative modes of transportation.

Task 1.3.3
- Member agencies with land use authority will identify development elements and associated policies that encourage use of high-occupancy vehicles and other alternative transportation.

Task 1.3.4
- Member agencies, with COMPASS support, will identify treatments for each regionally important corridor such as: access management, special intersection designs, signal coordination, Intelligent Transportation System, multi-modal opportunities and land use policies.

Task 1.3.5
- COMPASS will include criteria in the prioritization methodology for the plan and the Transportation Improvement Program to meet this objective.

Task 1.3.6
- COMPASS, through the long-range plan and subsequent studies, will identify corridors where bus or other high occupancy vehicle treatments or services are desired. This identification process will be coordinated with Valley Regional Transit and appropriate local and state governments.

Task 1.3.7
- COMPASS, through the long-range plan, will identify corridors where existing or forecasted congestion would impair the effectiveness of high occupancy vehicle treatment or services.

Task 1.3.8
- COMPASS will identify gaps in the existing transportation system.

Task 1.3.9
- COMPASS will work with transportation agencies in the region to update the Intelligent Transportation System Plan.

Task 1.3.10
- COMPASS will include prioritization criteria that promote more efficient use of the transportation system through signal coordination, access management and other transportation system management strategies.

Task 1.3.11
- COMPASS will coordinate with the Ada County Highway District and local governments in Ada County and Canyon County to evaluate roadway functional classifications and typologies as part of the “Transportation & Land Use Integration Plan.”
<table>
<thead>
<tr>
<th>Objective 1.4</th>
<th>Develop and implement transportation alternatives and land use patterns to achieve an average mode split of 5% of all trips.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.4.1 – Member agencies will provide to COMPASS the status of adoption of comprehensive plans, particularly the transportation element of those plans, and new ordinances proposed through Blueprint for Good Growth in Ada County or in Canyon County, new ordinances that support the use of public transportation alternatives through land use and transportation decisions.</td>
<td></td>
</tr>
<tr>
<td>Task 1.4.2 – COMPASS will support Valley Regional Transit and member agencies in planning for alternative transportation options.</td>
<td></td>
</tr>
<tr>
<td>Task 1.4.3 – COMPASS and Valley Regional Transit will plan and implement --when dedicated funding is available--a transit system with travel times on bus routes no more than twice the travel times for comparable automobile travel times.</td>
<td></td>
</tr>
<tr>
<td>Task 1.4.4 – COMPASS and Valley Regional Transit will plan and implement when dedicated funding is made available a transit system with travel times on fixed-guideway (rail and Bus Rapid Transit) facilities during peak hours with no more than one and a half times the travel time of an automobile during off-peak hours.</td>
<td></td>
</tr>
<tr>
<td>Task 1.4.5 – COMPASS will continue to update the bike path map in cooperation with local agencies. This pathway map will be expanded to include Canyon County.</td>
<td></td>
</tr>
<tr>
<td>Task 1.4.6 – When dedicated funding for public transportation is available, all flexible federal funding sources will be evaluated to determine the distribution of such funds to roadway and public transportation projects. This will be reviewed annually in conjunction with the Annual Monitoring Report and in consideration of progress made toward Communities in Motion goals.</td>
<td></td>
</tr>
<tr>
<td>Objective 1.5</td>
<td>Maximize funding sources for transportation system improvements and maintenance.</td>
</tr>
<tr>
<td>Task 1.5.1 – Member agencies will aid the efforts to obtain funding sources by evaluating their use of existing funding sources, developing innovative methods of funding and supporting regional efforts.</td>
<td></td>
</tr>
<tr>
<td>Task 1.5.2 – COMPASS and member agencies will work with state and federal elected officials and other sources to provide funding for transportation projects identified in the plan, including expanded transit services.</td>
<td></td>
</tr>
<tr>
<td>Task 1.5.3 – COMPASS will develop a plan for developing new efforts to seek additional funding sources, including existing funding tools currently not being used.</td>
<td></td>
</tr>
<tr>
<td>Task 1.5.4 – COMPASS will compile information on the efficiency/effectiveness of existing transportation expenditures to use in reporting to citizens and/or federal, state, and local elected officials.</td>
<td></td>
</tr>
<tr>
<td>Task 1.5.5</td>
<td>COMPASS will make seeking dedicated funding for public transportation a priority in its work program.</td>
</tr>
<tr>
<td>Task 1.5.6</td>
<td>COMPASS will make seeking implementation or extension of local option vehicle registration fee authority a priority in its work program.</td>
</tr>
<tr>
<td>Objective 1.6</td>
<td>Develop a method allowing modeling of peak-hour traffic with multiple modes.</td>
</tr>
<tr>
<td>Task 1.6.1</td>
<td>COMPASS will continue improvements to the transportation model to include better information on peak-hour travel with multiple modes for better analysis of transportation system needs.</td>
</tr>
<tr>
<td>Objective 1.7</td>
<td>Approach programming, planning, maintenance, construction, operations and project development activities and products in a “context sensitive” manner. This approach would include promotion of the “complete streets” approach.</td>
</tr>
<tr>
<td>Task 1.7.1</td>
<td>Member agencies will consider automobile, mass transit, walking, bicycling, environmental and aesthetic issues.</td>
</tr>
<tr>
<td>Task 1.7.2</td>
<td>COMPASS will develop a guidebook on context sensitive design to aid land use and transportation decision makers and create a “regional vocabulary” on context sensitive design.</td>
</tr>
<tr>
<td>Objective 1.8</td>
<td>Preserve freight travel as a priority in order to ensure the Treasure Valley’s economic competitiveness.</td>
</tr>
<tr>
<td>Task 1.8.1</td>
<td>COMPASS will conduct a study to identify freight issues in the Treasure Valley.</td>
</tr>
<tr>
<td>Task 1.8.2</td>
<td>COMPASS will work with ITD to identify and inventory regional and statewide freight flows.</td>
</tr>
<tr>
<td>Task 1.8.3</td>
<td>COMPASS will convene a work group of freight interests to assist in these activities.</td>
</tr>
<tr>
<td>Task 1.8.4</td>
<td>COMPASS will identify key freight origins and destinations to create a set of data for use in future plans and projects.</td>
</tr>
<tr>
<td>Task 1.8.5</td>
<td>-- COMPASS will research ways that freight data ties with economic development for use in future plans and projects.</td>
</tr>
<tr>
<td>Objective 1.9</td>
<td>Provide choices for travel in the region and service special access needs for all people, including youth, the elderly, persons with disabilities, and persons of varying economic status.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Task 1.9.1 – COMPASS and Valley Regional Transit will identify destinations that are more critical to the specified population groups.</td>
<td>![Green Check]</td>
</tr>
<tr>
<td>Task 1.9.2 – COMPASS and Valley Regional Transit will conduct a study to learn the overall responsiveness of the transportation network to the needs of minority and low-income populations.</td>
<td>![Green Check]</td>
</tr>
<tr>
<td>Task 1.9.3 – COMPASS will work with federal, state and local agencies to improve information on the residential location of specified population groups.</td>
<td>![Green Check]</td>
</tr>
<tr>
<td>Task 1.9.4 – COMPASS will incorporate forecasts of special needs populations in future demographic forecasts.</td>
<td></td>
</tr>
</tbody>
</table>

Coordination

Achieve better inter-jurisdictional coordination of transportation and land use planning.

<table>
<thead>
<tr>
<th>Objective 2.1</th>
<th>Provide guidance to local governments regarding how land use plans and policies can implement the vision of Communities in Motion as depicted by the Community Choices growth scenario.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 2.1.1 – Member agencies will assess and modify their comprehensive plans and ordinances to support and be consistent with the preferred growth and transportation scenario envisioned under “Community Choices.”</td>
<td></td>
</tr>
<tr>
<td>Task 2.1.2 – COMPASS will develop scoring criteria for the Transportation Improvement Program that provides for higher priorities for transportation projects and programs serving needs of the cities, especially mixed-use regional centers, regionally important corridors and economic activity centers and lower priorities for transportation projects and programs elsewhere. Transportation Improvement Program funds will be programmed for projects that support “Community Choices” growth scenario.</td>
<td>![Green Check]</td>
</tr>
<tr>
<td>Task 2.1.3 – Member agencies will develop their ordinances and comprehensive plans, particularly the transportation element of those plans, in coordination with COMPASS and local transportation agencies, as well as provide draft amendments of their comprehensive plans to COMPASS and local transportation agencies for analysis and recommendation.</td>
<td>![Green Check]</td>
</tr>
</tbody>
</table>
Task 2.1.4 – COMPASS staff will evaluate comprehensive plan amendments for their consistency with the vision of *Communities in Motion* and Blueprint for Good Growth in Ada county and provide a recommendation to the land use agency for consideration. These evaluations will be reviewed by the Regional Technical Advisory Committee.

Objective 2.2 Determine cumulative effects of decisions on the transportation infrastructure system.

Task 2.2.1 – Member agencies will share transportation financial data, as requested, on an annual basis in order for COMPASS to maintain an accurate and up-to-date financial report for future updates to the regional long-range transportation plan.

Task 2.2.2 – COMPASS will continue to develop and monitor the Congestion Management System. Traffic count and travel time will be monitored and reported on an annual basis.

Task 2.2.3 – COMPASS will track the cumulative transportation demand based on existing, approved and preliminary development and compare the cumulative growth patterns with those called for under Community Choices.

Task 2.2.4 – Member agencies will be responsible for tracking the cumulative demand of development on all other infrastructure facilities in their jurisdictions.

Environment

Minimize transportation impacts to people, cultural resources, and the environment.

Objective 3.1 Consider the natural, cultural, and built environment during the planning phase.

Task 3.1.1 – COMPASS will research ways that environmental issues, including cultural and historical resources, can be discovered during the planning phase of projects for use in assessing future plans and corridors.

Task 3.1.2 – COMPASS will develop a strategy to coordinate with environmental agencies on future planning efforts.

Task 3.1.3 – COMPASS will work with area governments to improve the consideration of environmental issues and mitigation as part of the transportation planning and implementation process.
<table>
<thead>
<tr>
<th>Objective 3.2</th>
<th>Develop and facilitate transportation-related air quality management strategies that are voluntary, innovative, and proactive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 3.2.1</td>
<td>COMPASS will research and recommend air quality management strategies to the COMPASS Board.</td>
</tr>
<tr>
<td>Task 3.2.2</td>
<td>COMPASS will consider the Treasure Valley Air Quality Council’s recommendations as related to the transportation system.</td>
</tr>
<tr>
<td>Objective 3.3</td>
<td>Develop method to analyze proposed corridors to avoid negative impacts in environmental justice consideration areas.</td>
</tr>
<tr>
<td>Task 3.3.1</td>
<td>COMPASS will develop a policy to provide meaningful input regarding environmental justice into the planning process.</td>
</tr>
<tr>
<td>Objective 3.4</td>
<td>Evaluate effects of growth on farmland and open space.</td>
</tr>
<tr>
<td>Task 3.4.1</td>
<td>COMPASS will work with member agencies to develop definitions of farmland and open spaces.</td>
</tr>
<tr>
<td>Task 3.4.2</td>
<td>COMPASS will inventory farmland and open space on an annual basis and report as part of the Annual Monitoring Report.</td>
</tr>
<tr>
<td>Objective 3.5</td>
<td>Protect critical open space and farmland resources as part of the Community Choices scenario.</td>
</tr>
<tr>
<td>Task 3.5.1</td>
<td>COMPASS will provide technical support to local governments’ efforts to develop and implement a coordinated regional open space plan.</td>
</tr>
<tr>
<td>Information</td>
<td>Coordinate data gathering and dispense better information.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Objective 4.1</td>
<td>Develop innovative methods to involve the public in transportation planning.</td>
</tr>
<tr>
<td>Task 4.1.1</td>
<td>COMPASS will use the Public Participation Committee to develop and improve public involvement methods in transportation planning.</td>
</tr>
<tr>
<td>Objective 4.2</td>
<td>Provide a method to present the transportation model in a way that citizens can understand the analysis.</td>
</tr>
<tr>
<td>Task 4.2.1</td>
<td>COMPASS will work with the Public Participation Committee to develop materials that present the model, its inputs, uses and limitations.</td>
</tr>
<tr>
<td>Objective 4.3</td>
<td>Promote dialogue about land use and transportation throughout the region.</td>
</tr>
<tr>
<td>Task 4.3.1</td>
<td>COMPASS will work with Valley Regional Transit, ACHD Commuteride, and member agencies to design a program to educate residents and employers about alternative transportation options and their relationship to land use.</td>
</tr>
<tr>
<td>Task 4.3.2</td>
<td>COMPASS will continue to sponsor an educational series to the general public on planning, growth and transportation issues.</td>
</tr>
<tr>
<td>Objective 4.4</td>
<td>Develop systems to evaluate the progress of all goals, objectives, and tasks.</td>
</tr>
<tr>
<td>Task 4.4.1</td>
<td>Member agencies will provide annual maintenance, safety (including accident reports and security information), and system expansions for reporting purposes and well develop a system to record and monitor data. The system will include data for transit and pathways.</td>
</tr>
<tr>
<td>Task 4.4.2</td>
<td>COMPASS will produce an annual monitoring report that provides information on maintenance and connections issues across the region.</td>
</tr>
</tbody>
</table>
Task 4.4.3 – COMPASS will prepare an annual monitoring report that also summarizes progress toward achieving alternative transportation and desired land use objectives. The report will provide information relevant to determining the need to amend or update the plan. Progress will be measured by various factors including, but not limited to, the following:

a. Residential numbers and densities along key transit routes and within a quarter to a half mile of potential fixed-guideway stations.
b. Total numbers and percentages of housing built at transit-supportive densities (eight plus units per acre) by jurisdiction.
c. Transit supply (service miles and hours) normalized by population.
d. Vanpool supply (number of routes and service miles).
e. Number and percentage of housing units built within walking distance of major attractors (job sites, service/retail centers, recreation sites, etc.)
f. Employment numbers and percentages within a quarter to a half mile of potential fixed-guideway stations and transit routes.
g. Miles of roadway with sidewalks (0, 1, 2 sides) and bike paths. Inventories of sidewalks and bike paths will be a priority for future funding.
h. Expenditures by mode (roadway, transit, bike/walking).
i. Status of actions to seek funding.
j. Usage factors (vehicle miles of travel, congestion indices, transit rider ship, carpool/vanpool rider ship, and park and ride lots) were available.
k. Local government amendments to comprehensive plans and land use ordinances in support of the desired land use pattern.

Task 4.4.4 – COMPASS will maintain the “Trend” scenario for annual comparisons as part of the Development Monitoring Report.

Task 4.4.5 – COMPASS will prepare informational materials that compare the recommendations of Communities in Motion with previous regional transportation plans and with plans and programs of member agencies.
Key Issues

Key issues as they relate to the goals of Communities in Motion are discussed below and shown in Table 3-3.

Table 3-3: Matrix of Key Issues as Related to Goals

<table>
<thead>
<tr>
<th>Goals</th>
<th>Housing/Jobs Balance and Housing Choices</th>
<th>Transportation Choices / Shorter Commute Distances</th>
<th>Connectivity Through Higher Densities and Less Land Developed</th>
<th>Preserve Open Space and Farmland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Coordination</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Environmental</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Information</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Issue 1: Housing/Jobs Balance and Housing Choices

The planning process evaluated the physical and fiscal needs of the region. The balance between housing and workplace is a critical area. A balance between housing and jobs results in a transportation system that works well because of the close proximity of commute trips.

The price of land and housing affects location decisions of many home-buyers. Lower income home-buyers have been going further and further away from employment and service centers to afford the type of home they desire. Maureen McAvey\(^7\) described this phenomenon as “Drive until you qualify.” One of the products in the Performance Monitoring Report shows the location of affordable housing. The report also looks at the transportation costs: when those are included, much of the “affordable” housing becomes less affordable.

The Community Choices scenario will support a better jobs and housing balance between the two counties by shifting more jobs to Canyon County. In 2035 69% of households are projected to be located in Ada County and 31% in Canyon County, with 73% of jobs in Ada County and 27% in Canyon County. Future housing stock will need to change significantly to encourage a better balance.

In Boise, Elmore, Gem, and Payette Counties, projected land use follows current growth patterns. Growth in these areas will more than likely be suburban and rural in nature. Housing types are projected to be predominantly single-family with little multi-family housing. Employment is expected to remain in the service sector, with government, professional, and retail being the mainstays in the wider region. The major corridors in these counties lead to Ada and Canyon Counties and thus will have a significant impact on future transportation needs.

Throughout the 2004-2006 planning process, many participants requested a choice in housing. Currently a suburban family home or a rental apartment is predominant in most communities. As circumstances change, housing choices are an asset. For example, someone first starting out may prefer a rental apartment. As he or she advances to a better paying job and possibly gets married, a small home, a condominium, or town home might be the best match for a busy lifestyle. Later, as children are born, a home with a yard in a subdivision or maybe a home in the country may be desired. When the children leave and one nears retirement, he or she may no longer want to maintain a large yard and may prefer a smaller home, condominium, or apartment — essentially closing the circle. These are the “choices” that participants in the planning process want.

Growth in the region has been dramatic, but the nature of that growth is also changing. Nationally there have been several patterns that can affect communities, including demand for housing and public services:

- A trend toward smaller household sizes.
- More non-traditional households (single-person households, unrelated person households).
- An increase in average population age, particularly as the baby boom generation of post World War II nears retirement.

Some national trends may be muted by regional influences—religion, culture, ethnicity, in-migration, and immigration—some of these trends can be seen in our region. For Ada County and Canyon County, the number of households increased 46% between 1990 and 2000, but the number of households with a married couple increased 39%. Households with a female householder increased 52%, a male householder increased 104%, and non-family households increased 53% (non-family includes single-person and two or more persons sharing a house but not related by blood or marriage).8

8 Information presented here is from the 2000 Census, conducted every ten years. The next release of Census will be in 2011.
Figure 3-5 depicts the age by gender distribution for Ada and Canyon Counties. This type of chart is sometimes called a population pyramid. The pattern matches a description put out by the U.S. Bureau of the Census: “…a population pyramid that resembles a square, indicating slow and sustained growth with the birth rate exceeding the death rate, though not by a great margin.”

But within the region, there can be a great deal of difference. Compare the regional pyramid with the more “classic” pattern seen for Canyon County (Figure 3-6). Note the broader base at the bottom, indicating a much younger population than the region as a whole. The reason for the difference is the influence of Ada County (Figure 3-7).

For Ada County, the bulge in the middle is the baby boomer population, the last of which were born in 1961 and oldest nearing 60. Should this pattern persist with growth, how will it affect demand for smaller homes and lots? Will convenient access to urban amenities become a more marketable feature?

For more information, COMPASS has compiled additional census data for the six-county region.

10 Additional census information URL: http://www.compassidaho.org/documents/prodserv/demo/CensusData.pdf
Issue 2: Transportation Choices / Shorter Commute Distances

The COMPASS Travel Demand Forecast Model\(^{11}\) predicts the roadways that will be over capacity in 2035. In Chapter 5, there are maps showing the current situation and projected conditions using the growth under the Community Choices land use scenario. The additional growth in population through 2035 creates more trips on the roadways. The deficiency maps in Chapter 5 show those roads that are over capacity resulting in much slower daily speeds with the additional traffic.

Growth in a dispersed pattern creates even more demand on the transportation system. Even with a more compact land use pattern, there will be major increases in travel time. These are described in Chapter 5. With traffic and congestion on the rise, we heard clearly from our residents that this is not the choice for the future. Therefore, more options are needed such as transit, bike lanes, and walking paths (Figure 3-8). The vision for *Communities in Motion* provides for a greatly expanded transit system. The discussion about the issues of jobs/housing balance is also a factor. If people live closer to their jobs, the commute is not nearly as difficult as traveling across the region.

\(^{11}\) The COMPASS Travel Demand Forecast Model provides a forecast of average (week) day traffic (ADT) for each link of a given transportation network and demographic data set. The model is regularly maintained and updated to include all completed roadway projects. Future-year model networks include anticipated widening and new roadway projects. A more detailed description of the transportation model can be found on the COMPASS website: http://www.compassidaho.org/prodser/traveldemand.htm.
Issue 3: Connectivity through Higher Densities and Less Land Developed

These issues are inter-connected. Some density is needed to make the *Communities in Motion* vision a reality. Expansion of the transit system is a major part of the vision. However, the current densities in housing and commercial properties do not support transit. Higher densities strategically placed around transit centers, downtown core areas, and transit corridors can provide better connectivity to jobs and every day needs than low densities throughout the region (Figure 3-9). “Higher density” does not mean New York City.

A transit system can be supported with densities as low as seven or eight housing units per acre\(^\text{12}\) in these strategic locations. The typical subdivision in Ada County or Canyon County ranges from two and a half to four homes per acre.

Issue 4: Open Space and Farmland

Communities in Motion encourages the retention of open space. This includes prime farm land\(^\text{13}\) and “buffer zones” between cities to support the unique boundaries of each city. Transportation decisions play a role in preserving open space. For example, a decision to build a road may result in an unanticipated outcome of encouraging development. This “induced” development could happen in places that are not consistent with the land use vision.

More specifically, an example of induced development is when a roadway is developed between two cities to provide better connections between the cities, which can encourage increased business development in the area. This can cause an unintended outcome of developed land between the cities, thus reducing available open space between them. The decision to develop the roadway “induced” the development along that corridor.

\(^{12}\) Transit supportive housing density – seven or eight units per acre can be derived a variety of ways including a wide mix of densities that averages the desired density per acre.

\(^{13}\) Prime farmland is a combination of prime soils as defined by the US Soil Conservation Service and areas served by irrigation.
In Sum

Regional growth will transform the valley over the next 25 years. The issues and opportunities presented by that growth have been discussed in this chapter. Two distinct futures, Community Choices and Trend, were presented, each with a potential to happen. Community Choices would result in more compact growth, with a mixture of land uses and a greater potential for walking, biking and transit use. Design principles appropriate to Community Choices are described in Table 3-4. Trend would result in a much less compact region, less open space and a continued reliance on the automobile for virtually all travel.

The plan opts for Community Choices as described in Chapter 4. The transportation systems to serve that vision are laid out in Chapters 5 and 6. Financial information is provided in Chapter 12. Chapter 14 provides a view of what might lie beyond 2035.

Table 3-4: Design Principles Consistent with Community Choices

<table>
<thead>
<tr>
<th>Five Density and Design Principles¹⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase densities in appropriate locations</td>
</tr>
<tr>
<td>Connect people and places through a complete street network that invites walking and bicycling and provides convenient access to bus or rail</td>
</tr>
<tr>
<td>Mix uses to create a quality of life where people may chose to live near their work, walk to the local store, or bike to the library with their kids</td>
</tr>
<tr>
<td>Place parking in alternative locations to support density and create inviting places to walk</td>
</tr>
<tr>
<td>Create great places for people</td>
</tr>
</tbody>
</table>

CHAPTER 4

GROWING THE FUTURE

Regional Growth

During the past decade the economy, housing, and the job market have all been through cycles of boom and bust, demonstrating the difficulty of predicting the future. The next 25 years will likely have more ups and downs. *Communities in Motion* forecasts that in 25 years, the valley will host more than 1.046 million people, almost 400,000 households, and one-half million jobs. This would make the region larger than Tucson, AZ, is now and almost as big as Salt Lake City, UT, is now. The effect of this population on roads, energy, air quality, water, agricultural land, and other resources can be problematic. However, taking necessary steps now can help to alleviate or even improve the situation in the future.

Communities in Motion considered future transportation needs by developing the Community Choices scenario (see Chapter 3: Defining the Vision). Community Choices is the scenario for land use and transportation that emerged from public workshops during 2004-2005. The COMPASS Board approved this scenario in 2006 and reconfirmed this vision in 2010. The name reflects choice in housing types (single family, multi-family, town homes, zero lot line homes, condominiums, and large lot) and in transportation modes (automobile, transit options, bike lanes, and walking paths). It is the growth pattern to be supported by public investments in transportation.

Understanding and anticipating demographic, housing, and transportation trends will be critical to anticipating and solving traffic problems of today and tomorrow.

Demographic Trends

Historically, the nuclear family has been the most common form of household in the United States. The Baby Boom generation is an example of how this family unit has impacted today's conditions. The way we shop, work, live, and commute is largely the result of the way our households are established. In the last decades, a tremendous shift has occurred; away from nuclear families and toward more diverse household units. Modern families will likely require a different built environment. Changing demographics, such as household makeup and age, will impact the demand for different types of housing and transportation options.
Housing Trends

Over the first part of the 2000s, the Treasure Valley saw sharp increases in in-migration, and housing prices escalated dramatically in accordance with this new demand (Figure 4-1). This caused a decline in housing affordability and pushed many family-wage households to suburban fringes. This new demand for road capacity expansion and transportation agencies caused difficulties building and maintaining a transportation network with limited resources.

The last several years saw the opposite as the subprime mortgage crisis struck. This crisis brought on a dramatic rise in mortgage delinquencies and foreclosures in the United States, with major adverse consequences for banks and financial markets around the globe.

The need for more affordable housing, together with shrinking household sizes and higher energy rates, have generated a demand for a different housing stock, with smaller houses in more walkable communities.¹ Mixed use and transit oriented developments can decrease the cost of housing and reduce the costs placed on the transportation network. However, high-density housing often face opposition from communities concerned about home values, safety, traffic, and other burdens to public services. Poorly-designed density and subsequent opposition to these developments can continue the trend of sprawling communities and associated transportation costs.

Figure 1: Total New Construction Permits Issued by Year

Figure 4-1: Total New Construction Permits Issued by Year

Figures 4-2 and 4-3 show how the “drive to qualify” mentality (a person must travel away from the city center and major job centers to find a home in a price range where he or she can qualify for the mortgage), has pushed affordable housing to the rural areas, while making transportation costs higher.
Energy Trends

Energy trends, both supply and demand, could have a drastic impact on planning the future transportation network. From a supply standpoint, the Gulf oil spill in summer 2010 shows the difficulty of extracting cheap oil in environmentally-sensitive ways. Demand is also likely to increase as many developing nations are entering into an economy that promotes increased energy use. Both factors can result in higher energy costs. Rising energy costs, both incremental and sudden, can result in macro-level changes in travel behavior and new technologies that planning agencies may not be able to accurately predict. This can result in reactive instead of proactive efforts to build and maintain an effective transportation network. Increasing fuel prices may also shift growth demands toward employment centers, walkable neighborhoods, and near transit routes.

Household fuel prices for heating and cooling could also reduce the amount of discretionary income for households. This increased economic burden may make it difficult for households to afford consumer expenditures, taxes for roadway and transit improvements, and other quality of life demands. Should fuel cost continue to rise, will this begin to affect such decisions?

Employment Trends

Despite losing more than 30,000 jobs in the metropolitan area during the Great Recession (Figure 4-4), demographers expect almost 500,000 jobs will be added in the region by 2035.3 The location and type of employment can have a significant impact on the type and level of transportation improvements needed to keep up with demand. Jobs that are spread out and far from housing create a greater burden on transportation networks. New jobs may result in escalating housing prices and land values, which in turn can result in affordable housing located further and further from employment centers.

This “jobs/housing imbalance” is facing this region and many other metropolitan areas. The transportation system works much better when jobs are located near housing and vice-versa, thus creating shorter commute distances. Communities in Motion anticipates that jobs will be spread more efficiently throughout the region, thus creating the opportunity for people to live closer to where they work – creating better balance in jobs and housing. Also, jobs that are clustered near transit routes can reduce the amount of vehicles on the road.

Changes in how, when, and where people will work in the future can change transportation patterns. For example, if more people work from home or work flexible schedules, then rush-hour traffic can become less severe, not because of a reduction in employment or population, but because fewer workers will be working during similar hours of the day.

Figure 4-4: Boise-Nampa Unemployment Rate

Boise-Nampa Metropolitan Area
Unemployment Rate
Seasonally-Adjusted
Treasure Valley as a Key Regional Hub

In addition to those who live and work in southwest Idaho, many people also pass through the region. Interstate-84 (I-84) is the major east/west freeway through southwest Idaho, and is the main route for people or products to get from major shipping ports such as Seattle, Tacoma, and Portland to locations in the Intermountain West and beyond (Figure 4-5). The prosperity of southwest Idaho is tied in part to the futures of other regional cities.

Most newcomers to the Treasure Valley come from Los Angeles, Salt Lake, Seattle, Phoenix, and other areas of Idaho. Would the success of other regional areas likewise promote this area or attract households and jobs to those places? On the other hand, would failure in other regional areas make this a more or less attractive place to relocate?

Additional information on freight and air traffic can be found in chapter 11 of Communities in Motion.

Continuing Compact Growth Vision

Forecasting

Planning transportation facilities for rapidly growing urban area like the Treasure Valley requires an adequate understanding of future usage. Population, employment, and land use are basic determinants of travel; therefore, a first step in assessing transportation needs is to prepare a population estimate and forecast. One of the initial steps to identifying transportation improvements is to realize land use, growth, and subsequent travel demand impacts.

COMPASS’ forecasts are used by policymakers and the general public, as well as by public and private agencies throughout the region. Local jurisdictions use the forecasts for general plan updates and capital facilities planning, including environmental impact reports, and for local transportation planning. Other agencies such as the school districts, public services, and retail businesses use aspects of COMPASS’ forecasts to develop plans for providing services. COMPASS’ forecasts represent the changes we can anticipate for the region and its communities based upon the best available information at the time the forecast is produced and reputable computer models.

They are meant to help policy and decision-makers prepare for the future and are not an expression for or against growth.

4 Census 2000 Migration Data. County-to-County Migration Flow Files - U.S. Census Bureau.
Modeling

COMPASS uses models in travel demand and land use forecasting. Models are reflections of rational views of how the world works and provide a consistent framework for our discussions and analyses. Good models are complex enough to represent a great variety of social, economic, and environmental phenomena and simple enough to create transparency. Models are valuable tools for consensus building and for making informed planning decisions; however, models do not make policy decisions. Models can be useful for the following:

1. Analysis of past and present growth patterns and travel demand.
2. Projection of land use patterns and conditions.
3. Prescription of desired future conditions and requisite policies.

For a more rational and scientific approach to growth forecasting COMPASS acquired a land use model. This model, UPlan, demonstrates likely areas for growth due to their level of attractiveness, such as the proximity to transportation facilities, existing infrastructure, political boundaries, and employment sites. Areas are given values based on their characteristics and then growth is allocated accordingly (Figure 4-6). This model reflects land use types desired by local land use plans and policies and shows how decisions made today are most likely to impact the region decades into the future.

COMPASS uses a travel demand model to forecast roadway deficiencies, level of service analysis, and other transportation planning applications. The COMPASS travel demand model is discussed in more detail in Chapter 5 and at www.compassidaho.org/prodserv/traveldemand.htm.

A summary of the growth allocation is shown in Table 4-1. This table depicts changes in population and jobs by demographic areas. These areas are not city limits, but generally are close to the area of impact configurations. More detailed allocation information can be viewed at http://www.compassidaho.org/prodserv/demo-forecasts.htm. Current and future population and employment forecast maps are on pages 4-10 through 4-12 (Figures 4-7 through 4-9).

5 Areas of impact are required under Idaho Statute (Idaho Code 67-65, et. al.) as part of the annexation process. Such areas are approved by the county commissioners upon negotiation with the city or cities. Within the area of impact, city plans and development standards are often adopted by the county.
Monitoring the Vision

COMPASS tracks growth in the economy, jobs, building permits, and other indicators to determine the health of the area and the potential demand on the transportation system. Growth and Transportation Monitoring Reports were discussed in Chapter 2. These reports highlight traffic congestion, growth impacts, and implementing results.

Implementing the Vision

Community Choices offers a vision for a more cost-effective, multi-modal transportation system. Implementation of the Community Choices vision will require buy-in of many different stakeholders. Livable and sustainable communities (Chapter 13) are not created by a single organization. Public, private, and non-profits are needed to coordinate land use, transportation, environmental, economic development, education, health, social services, housing, and transit. Every stakeholder has a role, including local municipalities, transportation agencies, neighborhood groups, developers, financial institutions, and the public (Figure 4-10, page 4-12).

A variety of local government policies and projects were initiated to implement the Community Choices vision of Communities in Motion. These are tracked in the Communities in Motion Implementation Guidebook: http://www.compassidaho.org/prodserv/reglrtranpl.htm.

Table 4-1: Summary Demographics for 2035

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boise</td>
<td>250,645</td>
<td>343,712</td>
<td>37%</td>
<td>150,656</td>
<td>232,836</td>
<td>55%</td>
</tr>
<tr>
<td>Caldwell</td>
<td>49,149</td>
<td>96,691</td>
<td>97%</td>
<td>12,298</td>
<td>40,570</td>
<td>230%</td>
</tr>
<tr>
<td>Nampa</td>
<td>101,396</td>
<td>168,078</td>
<td>66%</td>
<td>30,869</td>
<td>65,108</td>
<td>111%</td>
</tr>
<tr>
<td>Meridian</td>
<td>86,229</td>
<td>172,576</td>
<td>100%</td>
<td>28,662</td>
<td>74,469</td>
<td>160%</td>
</tr>
<tr>
<td>Eagle</td>
<td>24,049</td>
<td>54,179</td>
<td>125%</td>
<td>5,364</td>
<td>12,304</td>
<td>129%</td>
</tr>
<tr>
<td>Kuna</td>
<td>17,102</td>
<td>54,599</td>
<td>219%</td>
<td>1,516</td>
<td>5,896</td>
<td>289%</td>
</tr>
<tr>
<td>Middleton</td>
<td>10,743</td>
<td>33,965</td>
<td>216%</td>
<td>1,131</td>
<td>7,924</td>
<td>601%</td>
</tr>
<tr>
<td>Garden City</td>
<td>11,459</td>
<td>25,753</td>
<td>125%</td>
<td>8,364</td>
<td>13,815</td>
<td>65%</td>
</tr>
<tr>
<td>Star</td>
<td>7,476</td>
<td>20,825</td>
<td>179%</td>
<td>729</td>
<td>2,061</td>
<td>183%</td>
</tr>
<tr>
<td>Parma</td>
<td>3,611</td>
<td>10,703</td>
<td>196%</td>
<td>759</td>
<td>4,381</td>
<td>477%</td>
</tr>
</tbody>
</table>
Figure 4-7: 2030 Population Density
Figure 4-8: 2010 Employment Density
Figure 4-9: 2035 Employment Density
Stakeholder Benefits: This regional long-term collaborative approach provides advantages for all stakeholders. Some of these stakeholder advantages include:

Elected Officials
- Higher, more stable property values
- Reduced pollution and environmental destruction
- Enhanced ability to maintain economic competitiveness
- Reduced dependence on foreign oil
- Less taxation needed for roadways
- Revitalize neighborhoods
- Reduce crime and increase safety
- Increase social capital and public involvement

Developers
- Increased foot traffic and customers for area businesses
- Reduced incentive to sprawl, increased incentive for compact development
- Less expensive than funding road building and sprawl
- Increased land values, rents, and real estate performance
- Larger market as it increases affordable housing opportunities
- Available transit reduces parking requirements and costs
- Increase access to labor pools

Public
- Higher quality of life
- Better places to live, work, and play
- Less cookie-cutter and strip development
- Increased opportunities for quality urban lifestyle
- More walkable lifestyles away from traffic
- Reduced household spending on transportation, resulting in more affordable housing
- Healthier lifestyle with more walking and less stress
- Shorter commutes and more free time
- Environmental quality
- Increased transit ridership
- Reduced traffic congestion and driving
- Reduced car accidents and injuries
- Preservation of open space

Figure 4-10: Stakeholder Benefits
CHAPTER 5

DESIGNING THE FUTURE ROADWAY NETWORK

Where Are We Now?

Roadway Management

A number of agencies manage roadways throughout the region as described below.

Idaho Transportation Department (ITD). ITD has jurisdiction over the state and federal roadways throughout the state and is responsible for 11,997 lane miles and 1,777 bridges. ITD District 3, which comprises ten counties in southwest Idaho, has 2,551 lane miles of highway and 392 bridges. The ten counties contain 44% of the state’s population.¹ ITD also has divisions for aviation and public transportation.

Ada County Highway District (ACHD). Ada County is unique in Idaho, and perhaps in the nation, in having a single, county-wide highway district with a separately elected board. ACHD maintains roadways and makes improvements throughout the county, except for public roads under ITD jurisdiction. No cities have roadway jurisdiction in Ada County.

Canyon County. Canyon County has multiple roadway jurisdictions. Each larger city (Nampa, Caldwell, Middleton, and Parma) within the county has jurisdiction over its roadways. In addition, there are four highway districts that serve unincorporated areas: Nampa Highway District #1, Notus-Parma Highway District #2, Golden Gate Highway District #3, and Canyon Highway District #4. The smaller cities also contract roadway services from the surrounding highway district.

Current Ada and Canyon Roadways and Traffic

The current system includes roadways that are in existence as of 2010. Table 5-1 shows a summary of key statistics that aid in the understanding of overall performance of the roadway system. This analysis includes today’s public transportation system (Chapter 6). The resulting congested speeds are shown in Figure 5-1. The analyses for today’s conditions and future conditions were done via a computerized travel demand model created by Citilabs. The software is called Cube Voyager—just one of several packages to forecast future travel demand and travel conditions.

Table 5-1: Existing Network with 2010 Demographics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>589,251</td>
</tr>
<tr>
<td>Employment</td>
<td>248,985</td>
</tr>
<tr>
<td>Vehicle miles of travel</td>
<td>12,210,000</td>
</tr>
<tr>
<td>Hours of delay</td>
<td>27,000</td>
</tr>
<tr>
<td>Travel time to / from common locations</td>
<td></td>
</tr>
<tr>
<td>Caldwell to downtown Boise</td>
<td>35 min</td>
</tr>
<tr>
<td>Nampa to Boise Airport</td>
<td>25 min</td>
</tr>
<tr>
<td>Middleton to Hewlett-Packard</td>
<td>25 min</td>
</tr>
<tr>
<td>North Meridian to Boise Towne Square Mall</td>
<td>20 min</td>
</tr>
</tbody>
</table>

Land Use Implications for Roadways

Chapter 4 addressed growth in the two-county region (Ada and Canyon), envisioning a 2035 population of 1.046 million. The growth forecast has major implications for transportation:

- Magnitude. Adding 500,000 people, 174,000 households, and 225,000 jobs to the area is a major factor in travel demand. To put this into perspective, the growth would add the equivalent of 2.4 new cities the size of the City of Boise or six cities the size of the City of Nampa.

- Location. Where this growth will occur is critical as well. As discussed in Chapter 4, the location of population/housing near employment is a key factor in the need to travel. It is not simply a matter of getting to work. Employment locations also affect the travel distances to services and shopping. Work trips are certainly critical, since they tend to cluster during peak hours, but other types of trips constitute the majority of travel during a typical weekday. How will this change during the next 25 years?
Figure 5-1: 2010 Congestion on Existing Network
• Westward population movement. Community Choices, the growth pattern assumed for this plan also assumes that jobs would be added to western portions of the planning area to help reduce the need to travel.

• Design. Also addressed in Chapter 4 is the assumption that growth would be more compact, not only reducing the need to travel but enhancing the likelihood that more trips could be by other modes such as bus, walking, and biking. As was noted in the 2006 plan process, a more compact design would reduce daily vehicle miles of travel by 5%.

This growth was tested on three transportation networks:

• Programmed\(^2\) - 2015 network, today’s transit
• Funded – 2035 funded only network with current transit levels
• Optimal – 2035 funded and unfunded network

Functional Street Classification

The current (2030) roadway functional classification is shown in Figure 5-2. A revised functional classification map for 2035 is shown in Figure 5-3. The concept of functional classification is covered later in this chapter.

The map link in the footnote below provides a high quality version of the 2035 functional classification of roadways for Ada County and Canyon County.\(^3\) For the purposes of this plan, only roadways classified as arterials are shown due to the size of the planning area and the fact that the plan is regional in nature. Sub-area studies are needed to develop circulation and collector systems at the local level. There is also a separate map of functionally classified roadways for federal funding purposes, but with only a ten-year horizon.

\(^2\) Programmed Projects are projects that have been budgeted for implementation within the next three years as shown in Table 5-3. Funded and Unfunded projects are presented in Tables 5-7.

Figure 5-2: 2030 Functional Classification Map
Figure 5-3: 2035 Functional Classification Map
One of the critical elements over looked in functional classification is the concept of typology, which recognizes that land uses and street function should mesh with each other (Figure 5-4). While not formally evaluated in Communities in Motion, it has been considered at great lengths in an ACHD study over the past few years titled “Transportation and Land Use Integration Plan.” The general approach is that street designs should “…balance the needs of all users - motorists, pedestrians, cyclists, transit and people with disabilities - with streets that complement the built environment.” This concept is elaborated in Chapter 6 with the promotion of a “complete streets” policy.

The ACHD Commission adopted its Complete Streets Policy in May 2009. In its policy, ACHD stresses the need to allow for all users, consider the context of land use through which streets pass, and to plan and design with long-term needs in mind. With that in mind, it is important to consider the functional classification system as being implemented with a multitude of objectives.

How to Use the Functional Classification Maps

The Federal Functional Classification map is a federal requirement. The Federal Highway Administration (FHWA) requests an update of this map approximately every five years with a ten-year horizon. Roadways classified as a collector, arterial, interstate, and national highway system are identified on this map and are eligible for federal funding.

The Planning Functional Classification map is not a requirement under the federal rules. It is used as a planning, access management, and corridor preservation tool by COMPASS and local governments. This map is officially updated along with the long-range transportation plan and includes at least a twenty-year horizon. The COMPASS Board is concerned with roadways classified as arterials or greater. Proposed roadways are shown on this map to indicate where land needs to be preserved from development and to guide access management.

Definitions and Specifications

Streets in the transportation network are typically classified by how they will function in serving the traveling public. For example, local streets are intended to serve residential areas and not heavy traffic, while arterials are designed to serve through-traffic, often restricting access (driveways and local streets) to adjacent development. The federal classification system is more restrictive than the local classification system in limiting where roads can be classified as arterial. The former is used to define the streets on which federal funds may be spent, and the latter is a corridor preservation tool for local governments.

Each roadway jurisdiction has criteria upon which to classify a roadway. These criteria range from vehicle miles traveled (VMT) to length of the roadway. However, the way a road actually functions should be the main factor in determining the classification. Various jurisdictions also have standard criteria on the number of lanes and width of roadways for each classification. These criteria vary greatly and are only used as guidance in the decisions of each agency. COMPASS staff expects to create a guidebook for functional classification to aid in future decisions of functional classification.

Interstate (classification for planning and federal map) – The Interstate system consists of all presently designated routes of the interstate system. This is the highest level of arterial roadway and includes the highest levels of access control.

Expressway (classification for planning map only) – Expressways permit through traffic flow through urban areas and between major regional activity centers. Expressways are similar to an interstate with grade separated intersections, but can include some at-grade intersections at cross streets and may or may not be divided. Expressways are intended to provide higher levels of mobility rather than local property access. Expressways may have partial control of access with small amounts of direct land access.

Principal Arterials (classification for planning and federal map) – Principal arterials serve the major regional centers of activity of a metropolitan area, the higher traffic volume corridors, and the longer trips while carrying a higher proportion of the total urban areas travel on a minimum of roadway mileage. Principal arterials carry the major portion of trips entering and leaving the urban area, as well as the majority of through movements. To preserve the long term functionality of such roadways, they should have limited access with less access control than an Expressway, but more than a minor arterial.

Minor Arterials (classification for planning and federal map) – Minor arterials interconnect with and augment the principal arterial system and provide service to trips of shorter length at a lower level of travel mobility than principal arterials. Minor arterials also distribute travel to geographic areas smaller than those identified with the higher systems. This classification includes all arterials not included in a higher classification and places more emphasis on land access than principal arterials. Such roadways should still have limited access with less access control than a principal arterial, but more than a collector.
Collectors (not shown) – Collectors are roads providing traffic circulation within residential, commercial, and industrial areas. Collectors carry trips to and from arterials. Single-family homes are normally discouraged from having driveways onto collectors. Urban collector standards are generally two to three traffic lanes with sidewalks. The local roadway jurisdictions are responsible for the classification of collector designations, as collectors are considered more local in nature.

Steps to Finalize Functional Classification

A three-step process is needed to fully adopt the new Planning Functional Classification Map:

1. The COMPASS Board adopts recommended changes to the regional long-range transportation plan - which includes changes to the Planning Functional Classification Map.

2. The highway districts in Ada County and Canyon County, each city within Ada County and Canyon County, and the counties adopt the new Planning Functional Classification map in their planning documents.

3. The partnering counties adopt the proposed roadways and request ITD to incorporate the new roads or alignments when they could fit within the ten-year horizon of the Federal Functional Classification map. The new 2035 Planning Functional Classification Map will replace the 2030 version in Ada County and Canyon County as the official countywide maps. The map was developed via a cooperative process during 2009.

The following links will take you to a digital copy of these maps. (Note: the maps are formatted to print on large-sized paper.)

- 2035 Planning Functional Classification Map for Ada County and Canyon County⁵

- Federal 2015 Functional Classification Maps for Ada, Canyon, Boise, Elmore, Gem, and Payette counties⁶

Short-Range Funded (Committed) Projects

The preceding information is intended to help the reader understand the context of the plan: the players, the variety of issues, and the different modes. This section presents information about what is already underway in terms of transportation investments. Many of these projects have surfaced in prior plans and are just now being budgeted for improvements. Because they are budgeted, they will not need to be shown in the plan's recommendations, but the reader needs to know they are in process.

Boise/Elmore/Gem/Payette: http://www.itd.idaho.gov/planning/GIS/
Projects that are already programmed7 in the State Transportation Improvement Program for FY 2010-2014 are considered to be the short-range (committed) list of projects for this planning period.

The projects listed in Table 5-2 include only the major “regionally significant”8 capital improvements in the region, that is, projects on arterial roads or highways that involve additional lanes or new construction or transit equipment and facilities. They are listed here for informational purposes and are not subject to prioritization or additional planning reviews. Other projects of less significance are also programmed. These minor or more localized improvements can be found in the COMPASS Transportation Improvement Program9 or the jurisdiction’s Capital Improvements Program.

<table>
<thead>
<tr>
<th>Key Number10</th>
<th>Project and Brief Description</th>
<th>Total Cost</th>
<th>Programmed Year of Construction</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10541</td>
<td>Amity Road, Chestnut Street to Kings Corner – Widen from four to five lanes urban section.</td>
<td>$6,870,000</td>
<td>2011 Right-of-way</td>
<td></td>
</tr>
<tr>
<td>RD203-07</td>
<td>Eagle Road, Victory Road to Ridenbaugh Canal – Widen roadway from two lanes to five lanes, including curb, gutter, sidewalk and bike lanes. Project includes Eagle Road Bridge #248 over the Ridenbaugh Canal.</td>
<td>$3,593,000</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>RC0127</td>
<td>Fairview Avenue, Cloverdale Road to Five Mile Road – Widen roadway from five to seven lanes and complete curb, gutter, and sidewalk system.</td>
<td>$6,350,000</td>
<td>PD11</td>
<td></td>
</tr>
<tr>
<td>RC0130</td>
<td>Fairview Avenue, Eagle Road (SH 55) to Cloverdale Road – Widen roadway from five to seven lanes and complete curb, gutter, and sidewalk system.</td>
<td>$6,230,000</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>RC0131</td>
<td>Fairview Avenue, Five mile Road to Maple Grove Road – Widen roadway from five lanes to seven lanes and complete curb, gutter, and sidewalk system.</td>
<td>$7,188,000</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>RC0133</td>
<td>Fairview Avenue, Locust Grove Road to SH 55 (Eagle Road) – Widen roadway from five to seven lanes and complete curb, gutter, and sidewalk system.</td>
<td>$6,260,000</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>RC0135</td>
<td>Fairview Avenue, Meridian Road to Locust Grove Road – Widen roadway from five to seven lanes and complete curb, gutter, and sidewalk system.</td>
<td>$6,840,000</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>11582</td>
<td>Five Mile Road, Franklin Road to Fairview Avenue – Project includes construction work on Five Mile Road, not including the Fairview intersection. Widen to five lanes with shoulder, sidewalk, and railroad crossing.</td>
<td>$11,279,000</td>
<td>2013 Development and Right-of-way</td>
<td></td>
</tr>
<tr>
<td>RC0152</td>
<td>Franklin Road, Black Cat Road to Ten Mile Road – Widen roadway from two to five lanes with curb, gutter,</td>
<td>$7,180,000</td>
<td>PD</td>
<td></td>
</tr>
</tbody>
</table>

7 Programmed projects are projects that have been budgeted for implementation within the next three years.

8 On January 30, 2002, the Interagency Consultation Committee (ICC) developed the following definition of a “Regionally Significant” project: "A transportation project in Ada County, Idaho is designated 'Regionally Significant' if:
a. The project is for the improvement of either:
 i. A principal arterial or higher functional classification; or
 ii. A minor arterial which will have a twenty (20) year projected traffic volume of at least 45,000 vehicles a day after completion of the project; and
b. The project will add at least one new continuous vehicular lane which either:
 i. Extends from one intersecting principal or minor arterial to another intersecting principal or minor arterial; or
 ii. In the case of an interstate, extends from the on-ramp of one interstate interchange to a point beyond the offf ramp of the next adjacent interstate interchange." (State of Idaho Administrative Code (IDAPA 58.01.01.566)

9 \url{http://www.compassidaho.org/prodserv/transimprovement.htm}

10 Key Number. These numbers are assigned to a project for tracking purposes.

11 PD = Preliminary development
Table 5-2: 2010-2014 Regional Short Range (Committed) Project List

<table>
<thead>
<tr>
<th>Key Number</th>
<th>Project and Brief Description</th>
<th>Total Cost</th>
<th>Programmed Year of Construction</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC0165</td>
<td>Franklin Road, Ten Mile Road to Linder Road – Widen roadway from two lanes to five lanes with curb, gutter, and sidewalk. Project is on a designated I-84 Detour Route.</td>
<td>$5,740,000</td>
<td>2012 Right-of-way</td>
<td></td>
</tr>
<tr>
<td>12062</td>
<td>Franklin Road, Touchmark Way to Five Mile Road – Reconstruct and widen existing two to three lane roadway to four to five lanes with an urban section. Install drainage, curb, gutter, sidewalk, and shoulder.</td>
<td>$7,821,000</td>
<td>2011 Development</td>
<td></td>
</tr>
<tr>
<td>11970</td>
<td>I-84, 10th Street Interchange to Franklin Road Interchange, Caldwell – Construct a slip lane on I-84 between 10th Street Interchange and Franklin Road Interchange in Caldwell to aid traffic in safe and efficient merging on and off the interstate.</td>
<td>$1,544,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>11974</td>
<td>I-84, 11th Avenue to Garrity Boulevard, Nampa – Widen I-84 from two to three lanes in each direction from 11th Avenue to Garrity Boulevard and match the grade for the new bridge at Garrity Boulevard.</td>
<td>$13,513,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>11977</td>
<td>I-84, 11th Avenue Underpass, Nampa – Replace bridge.</td>
<td>$5,201,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>09819</td>
<td>I-84, Cole Road to Orchard Road Widening – Resurface one-mile of existing lanes on I-84 with “crack and seat” overlay. Add third lane in each direction.</td>
<td>$8,960,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>10915</td>
<td>I-84, Garrity Interchange – Widen mainline bridges to carry three lanes each direction. Replace two separate structures with a single bridge.</td>
<td>$4,495,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>10916</td>
<td>I-84, Garrity Interchange to 11th Avenue – Widen to three lanes in each direction.</td>
<td>$31,729,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>09823</td>
<td>I-84, Vista Avenue to Broadway Avenue Widening – Resurface one-mile of existing lanes on I-84 with “crack and seat” overlay. Widen the same section to three lanes in each direction.</td>
<td>$20,587,000</td>
<td>2010 Construction</td>
<td></td>
</tr>
<tr>
<td>RD205-07</td>
<td>Meridian Road and Main Street, Franklin Road to Cherry/Fairview Avenue – Phase 2 of the split corridor. Construct the northern portion (north of Franklin Road) of the Split Corridor roadway project. Includes a cross-over portion between Main Street and Meridian Road. Meridian Road, two-way segment – five lanes, one-way segment – three lanes, Main Street, one-way segment – three lanes.</td>
<td>$11,369,000</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>11236</td>
<td>SH 16, SH 44 (State Street) to US 20/26 (Chinden Boulevard) River Crossing – Construct 2.2 miles of four- lane divided highway with a new Boise River crossing. Construction needs approval from the State Legislature.</td>
<td>$108,346,000</td>
<td>2011 Right-of-way</td>
<td></td>
</tr>
<tr>
<td>12030</td>
<td>SH 16, Willow Creek Bridge – Replace bridge.</td>
<td>$2,400,000</td>
<td>2011 Development</td>
<td></td>
</tr>
<tr>
<td>RD202-37</td>
<td>Ustick Road, Meridian Road to Locust Grove Road – Widen to five-lane urban section with curb, gutter, sidewalks, and bike lanes.</td>
<td>$5,138,000</td>
<td>PD</td>
<td></td>
</tr>
</tbody>
</table>
Evaluating the 2035 growth on these roadway improvements is done to illustrate what happens if we stay with what is often termed the “programmed” network. These improvements are added to the existing network, with the programmed network then forming the base from which the planned network is developed. The programmed network was tested with the 2035 growth with results shown in Table 5-3.

<table>
<thead>
<tr>
<th>Table 5-3: Programmed Network with 2035 Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Employment</td>
</tr>
<tr>
<td>Vehicle miles of travel</td>
</tr>
<tr>
<td>Hours of Delay</td>
</tr>
<tr>
<td>Travel time to / from common locations</td>
</tr>
<tr>
<td>• Caldwell to downtown Boise</td>
</tr>
<tr>
<td>• Nampa to Boise Airport</td>
</tr>
<tr>
<td>• Middleton to Hewlett-Packard</td>
</tr>
<tr>
<td>• North Meridian to Boise Towne Square Mall</td>
</tr>
</tbody>
</table>

The resulting congested speeds on major roads are depicted in Figure 5-5.
Figure 5-5: 2035 Congested Speeds 2015 Programmed Network
The Plan for Future Corridors

When the 2006 plan was prepared, a working group, the Plan Coordination Team (PCT), developed a transportation system for each of the two land use scenarios. For Trend, the PCT analyzed the transportation deficiencies of the no-build system. The highest deficiency roadways (more than 40% over capacity) were targeted for widening. Land use patterns in the Trend scenario indicated that public transportation was not a viable option; therefore, it was anticipated that the transit system would remain much as it is today. The Trend transportation system is not carried into this plan since it was for comparison purposes only. However, maps of the trend road12 and trend transit13 systems are available.

The PCT developed the transportation system for Community Choices by making transit the priority and planning roadway improvements that will enhance the transit system. Surprisingly, the roadway system for Community Choices was very similar to the one for Trend, although some roadways were not widened to the extent they were under the Trend scenario. Additional congestion was considered more acceptable in the compact areas – just as any major city experiences congestion in their compact development areas. The Community Choices roadway system can be viewed as a “sub-set” of the Trend roadway system. The Community Choices transit system discussed in Chapter 6 is more than ten times the size of the Trend transit system. The federal government requires that long-range transportation plans be fiscally constrained. In addition, we do not have enough funding to build an un-congested roadway network. The reality is that there is not enough money to pay for the optimal transportation (road and transit) networks under Community Choices without finding new revenue sources.

The implications of not funding a significantly better transportation system (roads and transit) include:

- More congestion in the future
- Few, if any, travel options for area residents
- A shift of travel from the increasingly congested state highways to local roads
- Travel delay and increased fuel consumption

12 Map of Trend Road Projects URL: http://www.compassidaho.org/documents/prodserv/maps/trendroad_B.pdf
Communities in Motion was developed with a vision toward large regional transportation projects rather than as specific local projects. There are two types of capital improvements: major capital and minor capital. It was determined that only the major capital corridors\(^{14}\) would be included specifically in the plan and prioritized. The minor capital projects include intersections, traffic signals, shorter-length roadway projects, and safety projects.

How were Corridors Placed in Priority in the 2006 Plan?

Transportation needs exceed existing revenues available to the region over the next 20 years. In 2006, the planning team developed a process to guide the selection of corridors so that funds could be spent where growth is desired and where the transportation benefits are highest. A similar process is used to aid COMPASS and its member agencies in selecting projects for short-term investments, i.e., those projects included in the Transportation Improvement Program (TIP)\(^{15}\) and State Transportation Improvement Program (STIP)\(^{16}\).

The selection and ranking process for capital projects included a variety of factors, including:

- Dollars per Vehicle Miles Traveled – the cost of improvements per vehicle mile traveled.
- Time Savings – potential time saved because of the improvements in hours.
- Connections – fills gaps in system, ties to transit spine, or removes barriers.
- Regionality – based on classification of roadway according to function: interstate, state highway, principal arterial, or minor arterial.
- Growth Area – relation of the corridor to the growth areas in the Community Choices scenario. The concept is that public funds would go to promote growth consistent with Community Choices and growth outside of the target areas would need to develop other funding.
- Percent of Regional Growth (x2) – percentage of the anticipated regional growth from 2005-2030.
- Transit (x2) – based on whether a roadway also has a regional transit route, a local transit route, or no transit route.
- Pavement and bridge sufficiency data for consideration in maintenance projects.
- Accident data for consideration in safety projects.
- Environmental issues that will help determine project readiness.
- Congestion Management System information on current system delays.

15 The Transportation Improvement Program (TIP) is a five-year approved list of priority transportation projects. The TIP lists all projects for which federal funds are anticipated, along with non-federally funded projects that are regionally significant. The list includes roadway and public transit projects.

16 The State Transportation Improvement Program (STIP) is similar to a TIP, but includes all projects in the state of Idaho, including those listed in the TIP.
• Traffic operations issues, including project benefits as detour routes for other corridors during construction.

• Existence of corridor management plans addressing access management and other land use policies.

When trying to prioritize corridors across a large region, there are challenges due to the nature of roadway funding. The primary issues are:

• Transportation funds are often constrained as to how they can be used. For example, some federal funds can only be used on interstate highways. Federal funds cannot be spent on routine maintenance and operations—pothole patching, snowplowing, etc. For local road agencies, federal funds make up less than 3% of revenue.

• The gas taxes and registration fees going into the Idaho Highway Distribution Account can only be spent on roads under provisions of the Idaho Constitution. Around 35% of the local agency revenue is based in the Highway Distribution Account.

• These funds are also constrained by “ownership.” Around 62% of the local roadway agencies’ revenues are derived from local sources such as property taxes, impact fees, and local option registration fees. Ada County and Canyon County raise 94% of the local revenue. Boise, Elmore, Gem and Payette Counties raise a much smaller share of their road revenue from local sources.

The bottom line is that it is difficult to mix the six-county regional corridors into a total pot to be allocated based on regional needs. More details on transportation financing, including projected revenues can be found in Chapter 12.

New Consideration of Corridors – Funded vs. Unfunded

Since the corridor prioritization process in 2005, the financial situation has worsened, with future revenues expected to lag behind needs. As noted in Chapter 12, the cost of the corridors deemed funded in 2006 rose from 2.6 billion to $3.1 billion in today’s dollars. When inflation across the next 25 years is considered, the gap rises. (See Chapter 12 for this discussion.) Since federal rules require that projects included in the plan not exceed forecasted revenues, corridors needed to be cut from the plan, moving from the funded list to the unfunded list.

The Idaho Legislature and the US Congress failed to increase fuel or other taxes with which to fund roads. Given this and the run-up in costs since 2005, the corridor list was reviewed to determine which corridors had any commitment in a capital improvement program, long-range funding program, or any demonstrated tie to a current funding mechanism such as impact fees.

The corridors shown in Table 5-4 had substantial committed funding and are deemed funded. This list will be amended should new funding be identified for corridors or portions of corridors not on the funded list. Examples of such new funding would include earmarks under federal legislation, developer contributions, etc. An update to Communities in Motion will start in 2011, and it is possible that the Idaho Legislature and the US Congress will act on legislation to increase funding for transportation.

Table 5-5 shows corridors deemed partially funded, while Table 5-6 includes corridors deemed completely unfunded. Figure 5-6 depicts the funded and unfunded corridors.

The following tables show corridors in Communities in Motion as funded, partially funded, or unfunded. The status of funding does not indicate lower priority, but funding status driven by the existence of funding “committed” to the corridor by state or local planning and programming documents. An unfunded corridor, or one which is partially funded, can be moved into funded status via amendment by the COMPASS Board as funding is identified. This could occur if the Idaho Legislature increases fuel taxes, registration fees or otherwise creates new revenue for ITD and other transportation providers. The Board could also target corridors for Surface Transportation Program funding or seek competitive grants as announced by the federal government.
<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>Funded Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amity Road: Southside Blvd-Cloverdale Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$67,528,000</td>
</tr>
<tr>
<td>2</td>
<td>Bowmont Road: A three-mile section Funding shown is only to construct a two-lane section</td>
<td>Funded</td>
<td>$7,807,000</td>
</tr>
<tr>
<td>3</td>
<td>Cloverdale Road: Lake Hazel Road-Chinden Blvd. Widen from two lanes to five lanes. Includes widening of overpass at I-84.</td>
<td>Funded</td>
<td>$71,729,000</td>
</tr>
<tr>
<td>4</td>
<td>Fairview Avenue: Meridian Road-Orchard. Widen from five lanes to seven lanes.</td>
<td>Funded</td>
<td>$53,359,000</td>
</tr>
<tr>
<td>5</td>
<td>Franklin Road: Idaho Center Road-Linder Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$34,740,000</td>
</tr>
<tr>
<td>6</td>
<td>I-84: Garrity Interchange-Meridian Interchange. Widen from four lanes to eight lanes. Includes reconstruction of Garrity Interchange and existing over/underpasses.</td>
<td>Funded</td>
<td>$286,044,000</td>
</tr>
<tr>
<td>7</td>
<td>Meridian Road: Waltman Drive - Ustick Road. Complete corridor improvements to five lanes. Includes partial couplet involving Main Street and Meridian Road.</td>
<td>Funded</td>
<td>$16,524,000</td>
</tr>
<tr>
<td>8</td>
<td>Ten Mile Road: Lake Hazel - Chinden Blvd. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$51,941,000</td>
</tr>
<tr>
<td>9</td>
<td>Ustick Road: Caldwell/Nampa Blvd.-Curtis Road. Widen from 2 lanes to 5 lanes.</td>
<td>Funded</td>
<td>$134,275,000</td>
</tr>
</tbody>
</table>

$723,947,000
Table 5-5: Partially Funded Corridors, In Alphabetical Order

<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>Funded Portion</th>
<th>2009 Cost</th>
<th>Programmed or Planned Funding</th>
<th>Unfunded Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I-84: Cole/Overland Interchange-Isaacs Canyon Interchange. Widen from four lanes to eight lanes. Includes interchange reconstruction at Orchard, Vista, Broadway and Gowen.</td>
<td>Funded</td>
<td>Orchard Interchange Vista Interchange Vista - Broadway widening</td>
<td>$381,228,000</td>
<td>$136,151,000 ($245,077,000)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I-84: Exit 29-Garrity Interchange. Widen from four lanes to six lanes. Includes reconstruction of Franklin and Nampa Blvd interchanges and existing over/underpasses.</td>
<td>Funded</td>
<td>Franklin – Garrity</td>
<td>$668,514,000</td>
<td>$286,044,000 ($382,470,000)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lake Hazel Road: Happy Valley - Eisenmann Road (including Gowen Road Realignment)</td>
<td>Funded</td>
<td>Locust Grove to Pleasant Valley - construct to five lanes</td>
<td>$135,589,000</td>
<td>$45,300,000 ($90,289,000)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Linder Road: Kuna Mora Road-Ustick Road. Widen/construct to five lanes. Includes a rail crossing in Kuna and an overpass at I-84.</td>
<td>Unfunded</td>
<td>Franklin to Chinden - Construct</td>
<td>$100,876,000</td>
<td>$28,000,000 ($72,876,000)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Linder Road: Ustick Road-Beacon Light Road. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>Franklin to Chinden - Construct</td>
<td>$92,400,000</td>
<td>$52,400,000 ($40,000,000)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SH 16: Ada/Gem line-I-84. Construct limited access highway with interchanges and overpasses at SH-44, US 20/26, Ustick, Franklin and I-84. Other interchange and overpass locations would be evaluated.</td>
<td>Funded</td>
<td>SH 44 to US 20/26 - construct to four lanes with river crossing</td>
<td>$314,688,000</td>
<td>$119,457,000 ($195,231,000)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SH 44 (State Street): SH 55 (Eagle Road) to downtown Boise (Multi-Modal Center)</td>
<td>Funded</td>
<td>Glenwood to 36th St - construct to seven lanes</td>
<td>$57,041,000</td>
<td>$36,700,000 ($20,341,000)</td>
<td></td>
</tr>
</tbody>
</table>

$1,750,336,000 $704,052,000 $2,454,388,000
<table>
<thead>
<tr>
<th>ID</th>
<th>Corridor</th>
<th>Status in 2006 CIM</th>
<th>2009 Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beacon Light Road Extension: Purple Sage Road-SH 16. Construct new two-lane road.</td>
<td>Unfunded</td>
<td>$4,033,000</td>
</tr>
<tr>
<td>2</td>
<td>Beacon Light Road: SH 16-SH 55. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$48,701,000</td>
</tr>
<tr>
<td>3</td>
<td>Black Cat Road: Franklin Road-Chinden Blvd. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$38,123,000</td>
</tr>
<tr>
<td>4</td>
<td>Cherry Lane: Middleton Road-Ten Mile Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$63,885,000</td>
</tr>
<tr>
<td>5</td>
<td>Greenhurst Road: Middleton Road-Happy Valley Road. Widen from two lanes to five lanes.</td>
<td>Funded</td>
<td>$34,740,000</td>
</tr>
<tr>
<td>6</td>
<td>Happy Valley Road (five-lane) – from Flamingo to Locust Lane</td>
<td>Unfunded</td>
<td>$40,907,000</td>
</tr>
<tr>
<td>7</td>
<td>I-84: Future SH 16 Interchange: (vicinity of McDermott). Construct new interchange with ramps to connect with Franklin</td>
<td>Funded</td>
<td>$95,762,000</td>
</tr>
<tr>
<td>8</td>
<td>I-84: Ustick Road Interchange. Construct new interchange.</td>
<td>Unfunded</td>
<td>$32,528,000</td>
</tr>
<tr>
<td>9</td>
<td>Kuna Mora - Bowmont Expressway Corridor</td>
<td>Unfunded</td>
<td>$290,000,000</td>
</tr>
<tr>
<td>10</td>
<td>McDermott Road: I-84-Lake Hazel Road (including RR overpass at Hubbard Road). Widen from two lanes to five lanes. Access management to preserve future expressway.</td>
<td>Unfunded</td>
<td>$45,019,000</td>
</tr>
<tr>
<td>11</td>
<td>Meridian Interchange</td>
<td>Funded</td>
<td>$35,000,000</td>
</tr>
<tr>
<td>12</td>
<td>Middleton Road: Greenhurst Road-SH 44. Widen from two lanes to five lanes.</td>
<td>Unfunded</td>
<td>$83,532,000</td>
</tr>
<tr>
<td>13</td>
<td>Robinson Road: Greenhurst Road-Cherry Ln. Widen from two lanes to five lanes north of I-84, three lanes south of I-84.</td>
<td>Unfunded</td>
<td>$48,792,000</td>
</tr>
<tr>
<td>14</td>
<td>SH 44: I-84-Ballantyne Road. Widen from two lanes to four-lane limited access highway. Includes a new alternate route around Middleton.</td>
<td>Funded</td>
<td>$108,773,000</td>
</tr>
<tr>
<td>15</td>
<td>SH 45: Deer Flat Road-Locust Lane. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$13,792,000</td>
</tr>
<tr>
<td>16</td>
<td>SH 55 (Eagle Road), I-84 to River Valley Street</td>
<td>Funded</td>
<td>$19,517,000</td>
</tr>
<tr>
<td>17</td>
<td>SH 55: Beacon Light Road-Brookside. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$1,822,000</td>
</tr>
<tr>
<td>18</td>
<td>SH 55: Sunnyslope curve to Karcher Interchange. Widen from two lanes to four-lane limited access highway.</td>
<td>Unfunded</td>
<td>$58,420,000</td>
</tr>
<tr>
<td>19</td>
<td>SH 69 Connection: Kuna Mora Road-Kuna Road. Build new road parallel to the Union Pacific rail (north side) to connect SH 69 to Kuna Mora. Broaden to include potential of a rail crossing option to Kuna Mora.</td>
<td>Unfunded</td>
<td>$22,509,000</td>
</tr>
<tr>
<td>20</td>
<td>Three Cities River Crossing: SH 44-Chinden Blvd. Construct new roadway at four/five lanes and new bridge.</td>
<td>Funded</td>
<td>$105,359,000</td>
</tr>
<tr>
<td>21</td>
<td>US 20/26: Exit 29-Eagle Road. Widen from two lanes to four-lane limited access highway.</td>
<td>Funded</td>
<td>$264,036,000</td>
</tr>
</tbody>
</table>

$1,455,250,000
Figure 5-6: Funded and Unfunded Corridors
Evaluating the Funded and Unfunded Corridors

The travel demand model process was used to evaluate the funded and unfunded corridors. The intent is to highlight the implications of fully funding the roadway system. One issue is whether fully funding the roadways without funding public transportation and other alternatives is the right long-term decision. Another issue is the implication of not funding the state transportation system. Tables 5-7 and 5-8 present the 2035 demographics (1.046 million people and 470,600 jobs) on the funded corridors depicted above and the same demographics on the full corridors (Optimal Network) that assumes both local and state corridors would be funded. Vehicle miles of travel drop slightly, but hours of delay drop far more, by 180,000 hours per day. Congested speeds for the two analyses are depicted in Figures 5-7 and 5-8.

<table>
<thead>
<tr>
<th>Table 5-7: Funded Corridors with 2035 Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle miles of travel</td>
</tr>
<tr>
<td>Hours of delay</td>
</tr>
<tr>
<td>Travel time to/from common locations</td>
</tr>
<tr>
<td>• Caldwell to downtown Boise</td>
</tr>
<tr>
<td>• Nampa to Boise Airport</td>
</tr>
<tr>
<td>• Middleton to Hewlett-Packard</td>
</tr>
<tr>
<td>• North Meridian to Boise Towne Square Mall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5-8: Funded and Unfunded Corridors with 2035 Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle miles of travel</td>
</tr>
<tr>
<td>Hours of delay</td>
</tr>
<tr>
<td>Travel time to/from four or five locations</td>
</tr>
<tr>
<td>• Caldwell to downtown Boise</td>
</tr>
<tr>
<td>• Nampa to Boise Airport</td>
</tr>
<tr>
<td>• Middleton to Hewlett-Packard</td>
</tr>
<tr>
<td>• North Meridian to Boise Towne Square Mall</td>
</tr>
</tbody>
</table>

Evaluation of the fully funded transit network indicates that 95,000 trips per day would use transit by 2035—if it were funded to the “optimal” level depicted in Chapter 6. Approximately 25,000 trips per day would occur on the high capacity corridor parallel to I-84. Without this transit, these trips will be adding to congestion on I-84 and other roads. Chapter 14 discusses very long-term growth and a future in which a roadway-only system will be faced with even more challenging growth. Similar to many growing urban areas, it is this longer view of growth that makes it critical to consider travel alternatives.

Another question is how the funded and unfunded corridors support the growth scenario, Community Choices, the preferred growth pattern under *Communities in Motion*. (See Chapter 4 for a discussion of growth patterns.) An analysis of population and employment growth in traffic analysis zones within one-mile of each corridor is presented in Table 5-9. Note that growth in the funded corridors is as substantial as growth in the unfunded corridors, while the average population and jobs growth for all funded corridors is somewhat higher than the average population and jobs growth for the unfunded corridors.
Figure 5-8: Congestion Using 2035 Demographics on Funded and Unfunded Network (Optimal) – Arterials or Higher
Table 5-9: Population and Employment Changes Within One Mile of Corridor

<table>
<thead>
<tr>
<th>Funded</th>
<th>Population</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
<td>2035</td>
</tr>
<tr>
<td>Amity Road</td>
<td>26,293</td>
<td>55,284</td>
</tr>
<tr>
<td>Bowmont Road</td>
<td>2,427</td>
<td>2,697</td>
</tr>
<tr>
<td>Cloverdale Road</td>
<td>53,103</td>
<td>79,105</td>
</tr>
<tr>
<td>Fairview Avenue</td>
<td>81,340</td>
<td>112,457</td>
</tr>
<tr>
<td>Franklin Road</td>
<td>22,154</td>
<td>46,876</td>
</tr>
<tr>
<td>I-84</td>
<td>33,742</td>
<td>40,265</td>
</tr>
<tr>
<td>Lake Hazel Road</td>
<td>22,326</td>
<td>43,438</td>
</tr>
<tr>
<td>Linder Road</td>
<td>28,331</td>
<td>68,123</td>
</tr>
<tr>
<td>Meridian Road</td>
<td>35,922</td>
<td>45,486</td>
</tr>
<tr>
<td>SH 16 Ext</td>
<td>2,350</td>
<td>19,719</td>
</tr>
<tr>
<td>State Street</td>
<td>41,052</td>
<td>64,249</td>
</tr>
<tr>
<td>Ustick Road</td>
<td>87,868</td>
<td>38,527</td>
</tr>
<tr>
<td>Average</td>
<td>23,277</td>
<td></td>
</tr>
<tr>
<td>Unfunded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beacon Light Road (SH 16 - SH 55)</td>
<td>13,812</td>
<td>30,940</td>
</tr>
<tr>
<td>Beacon Light Road to Purple Sage Road</td>
<td>2,410</td>
<td>16,407</td>
</tr>
<tr>
<td>Happy Valley Road</td>
<td>22,314</td>
<td>35,783</td>
</tr>
<tr>
<td>I-84 (Broadway - Isaacs Canyon)</td>
<td>18,090</td>
<td>22,121</td>
</tr>
<tr>
<td>I-84 (Ustick - Franklin Road)</td>
<td>34,021</td>
<td>47,612</td>
</tr>
<tr>
<td>Kuna Mora Road</td>
<td>3,108</td>
<td>9,092</td>
</tr>
<tr>
<td>Lake Hazel Road (RR-Locust and PV to I-84)</td>
<td>10,628</td>
<td>38,139</td>
</tr>
<tr>
<td>Linder Road (Chinden Blvd. - Beacon Light Road)</td>
<td>11,232</td>
<td>30,302</td>
</tr>
<tr>
<td>Linder Road (Franklin Road - Lake Hazel Road)</td>
<td>27,739</td>
<td>69,868</td>
</tr>
<tr>
<td>McDermott Road</td>
<td>3,143</td>
<td>14,427</td>
</tr>
<tr>
<td>Middleton Road (I-84 to Locust Lane)</td>
<td>26,280</td>
<td>44,034</td>
</tr>
<tr>
<td>Middleton Road (I-84 to n/o SH 44)</td>
<td>15,633</td>
<td>35,206</td>
</tr>
<tr>
<td>Robinson Road</td>
<td>13,979</td>
<td>36,218</td>
</tr>
<tr>
<td>SH 16 (excluding river crossing)</td>
<td>7,573</td>
<td>49,919</td>
</tr>
<tr>
<td>SH 19</td>
<td>18,482</td>
<td>38,577</td>
</tr>
<tr>
<td>SH 44 East (Eagle Road to Glenwood Street)</td>
<td>30,401</td>
<td>47,987</td>
</tr>
<tr>
<td>SH 44 West (I-84-Ballantyne Lane)</td>
<td>24,019</td>
<td>57,763</td>
</tr>
<tr>
<td>SH 55 (I-84 to River Valley Street)</td>
<td>19,557</td>
<td>25,955</td>
</tr>
<tr>
<td>SH 55 (n/o Beacon Light Road)</td>
<td>6,196</td>
<td>8,234</td>
</tr>
<tr>
<td>SH 69 Ext to Kuna Mora Road (parallel RR)</td>
<td>5,796</td>
<td>13,254</td>
</tr>
<tr>
<td>State Street (east of 27th Street)</td>
<td>34,416</td>
<td>31,465</td>
</tr>
<tr>
<td>Three Cities River Crossing</td>
<td>31,892</td>
<td>45,658</td>
</tr>
<tr>
<td>US 20/26</td>
<td>31,041</td>
<td>77,551</td>
</tr>
<tr>
<td></td>
<td>18,033</td>
<td></td>
</tr>
</tbody>
</table>
A graphic depiction of the relationship between the funded and unfunded corridors and the growth scenario under Community Choices is shown in Figure 5-9. This map shows that the funded corridors, with the exception of Bowmont Road, fall within the growth scenario adopted in 2006. Bowmont Road is programmed for rural federal funding. Inclusion of Bowmont Road in this plan does not remove any urban corridors from the funded list.

More travel occurs on the regional state highway network—the logical place for regional travel to occur. Without the funded state system, more travel will occur on local roads. For example, a driver on State Highway 55 (Eagle Road) heading north from Franklin Road may detour to Cloverdale Road or Locust Grove Road. These local roads are also likely to have more homes, schools, and other uses more sensitive to traffic issues such as noise, glare, and air pollution.

An analysis of two unfunded state highways was conducted to illustrate the potential effects on homes, schools, churches, and parks. The state highways selected were US 20/26 (Chinden Boulevard) and State Highway 55 (Eagle Road). These provide useful information since both highways are paralleled by local jurisdiction roads. The first analysis used residential parcel data, showing homes within 100 feet and within ¼ mile of each corridor. To normalize the comparison, roads in each corridor comparison were of similar length. The results are shown in Table 5-10.

<table>
<thead>
<tr>
<th>Corridor Description</th>
<th># Residential Parcels Within 1/4 mile</th>
<th># Residential Parcels Within 100’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Road (SH 55)</td>
<td>181</td>
<td>11</td>
</tr>
<tr>
<td>Locust Grove Road</td>
<td>1,249</td>
<td>122</td>
</tr>
<tr>
<td>Cloverdale Road</td>
<td>1,087</td>
<td>86</td>
</tr>
<tr>
<td>Chinden Road (US 20/26)</td>
<td>1,274</td>
<td>165</td>
</tr>
<tr>
<td>McMillan Road</td>
<td>3,089</td>
<td>250</td>
</tr>
<tr>
<td>Ustick Road</td>
<td>4,349</td>
<td>488</td>
</tr>
</tbody>
</table>

In both examples, the number of residential parcels along the state highways is substantially less than along the local jurisdiction roads. Homes within 100-feet are much more likely to be affected by noise and vibration, although homes within ¼ mile may also be affected by noise.
The effects on schools, churches, and parks are illustrated in Figures 5-10 and 5-11. Both examples indicate more schools are in proximity to the local jurisdiction. Note that the sites show public and private schools, elementary, middle and upper schools, and future school sites. The last condition applies to the school site south of Chinden near Linder. McMillan has more schools adjacent to the road and several are elementary level.

One park off Cloverdale was shown in the State Highway 55 analysis, but it should be noted that a park is being developed near Fairview and Eagle (northeast quadrant) not shown on map. Parks were immediately adjacent to McMillan and Ustick, but only golf courses were adjacent to US 20/26.

![Figure 5-10: SH 55, Locust Grove and Cloverdale](image)

![Figure 5-11: US 20/26, McMillan and Ustick](image)
The result of an unfunded state highway system is a shift in traffic to local system roads. This is summarized in Table 5-11. Volumes and speeds on Chinden, McMillan, and Ustick were taken between Middleton and Cloverdale Roads. On Eagle, Locust Grove, and Cloverdale, the sections were between Ustick and Chinden. Volumes on the local jurisdiction roads dropped in all but one portion. Note that the inclusion of the State Highway 16 extension did cause a ripple reduction that affected a number of corridors.

Table 5-11: Traffic Impacts on Selected Corridors

<table>
<thead>
<tr>
<th></th>
<th>Without Funded State Corridors</th>
<th>With Funded State Corridors</th>
<th>Change</th>
<th>Annual Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Vehicle Miles of Travel</td>
<td>28,789,678</td>
<td>28,784,482</td>
<td>-5,195</td>
<td>(1,330,035)</td>
</tr>
<tr>
<td>VMT on State Corridors</td>
<td>13,050,912</td>
<td>13,745,768</td>
<td>694,856</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.3%</td>
<td>47.8%</td>
<td>2.4%</td>
<td></td>
</tr>
<tr>
<td>Total Hours of Delay</td>
<td>338,626</td>
<td>316,196</td>
<td>-22,430</td>
<td>(5,742,118)</td>
</tr>
<tr>
<td>Average Volume Changes *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinden Blvd (US 20/26)</td>
<td>36,100</td>
<td>69,600</td>
<td>33,500</td>
<td></td>
</tr>
<tr>
<td>McMillan Road</td>
<td>18,300</td>
<td>15,700</td>
<td>-2,600</td>
<td></td>
</tr>
<tr>
<td>Ustick Road</td>
<td>39,300</td>
<td>36,600</td>
<td>-2,700</td>
<td></td>
</tr>
<tr>
<td>Eagle Road (SH 55)</td>
<td>53,000</td>
<td>50,300</td>
<td>-2,700</td>
<td></td>
</tr>
<tr>
<td>Locust Grove Road</td>
<td>13,700</td>
<td>13,800</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cloverdale Road</td>
<td>24,900</td>
<td>22,000</td>
<td>-2,900</td>
<td></td>
</tr>
<tr>
<td>Travel Speeds (Congested)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinden Blvd (US 20/26)</td>
<td>19.8</td>
<td>31.2</td>
<td>57.5%</td>
<td></td>
</tr>
<tr>
<td>McMillan Road</td>
<td>14.9</td>
<td>20.4</td>
<td>36.8%</td>
<td></td>
</tr>
<tr>
<td>Ustick Road</td>
<td>23.1</td>
<td>23.8</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>Eagle Road (SH 55)</td>
<td>31.5</td>
<td>31.2</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>Locust Grove Road</td>
<td>31.4</td>
<td>34.3</td>
<td>9.3%</td>
<td></td>
</tr>
<tr>
<td>Cloverdale Road</td>
<td>32.9</td>
<td>36.9</td>
<td>12.3%</td>
<td></td>
</tr>
</tbody>
</table>

* Note that state corridors include State Highway 16 extension

Demonstration of Air Quality Conformance

Federal regulations require that metropolitan planning organizations demonstrate their transportation plans conform to the State Implementation Plan (SIP) for air quality. This process is often referred to as “transportation conformity.” Ada County is the only jurisdiction in the six-county region required to have air quality plans as a result of past air quality problems. As part of the process, emissions are estimated and compared to budgets for air pollutants addressed in the SIP: carbon monoxide, particulates and volatile organic compounds (VOCs). VOCs are precursors to ozone.

The results of this analysis are given to the Federal Highways Administration and Federal Transit Administration for approval. The transportation plan is not official until this approval is received.
Only projects and services in the funded category of the plan can be used in calculating emissions for the conformity process. This means that the unfunded roads and transit projects cannot be counted toward reducing air pollutants. The dramatic decrease in speeds contributes to vehicle hours of delay. That means more vehicles sitting in traffic, waiting to clear the intersection, or waiting on the freeway ramp to enter traffic. These conditions contribute to more air pollution. It is not, however, an automatic solution to add lanes or build more roads. Chapter 6 discusses the creation of alternatives to single-occupancy vehicles, while Chapter 7 presents ways to make the current roadway—and transit—systems more effective and efficient.

One of the requirements under Safe, Accountable, Flexible, and Efficient Transportation Equity Act – a Legacy for Users (SAFETEA-LU) is that projects be shown in the year of expenditure. This is to promote a financially constrained approach to planning. The year of expenditure is also used in air quality conformity determinations. Conformity is done in five-year increments to the end of the plan, so runs are done for 2015, 2020, 2025, 2030, and 2035. For each increment, the projects that would be in place at that time (open to traffic or in service) would be used to evaluate travel demand and the resulting effects on production of air pollutants. Table 5-12 shows projects broken out by year of expenditure in terms of five-year increments. Note that the list in Table 5-12 is dependent on the availability of funds and is subject to change.

Table 5-12: Year of Expenditure for Funded Corridors and Partial Corridor Segments

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Section</th>
<th>Year of Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amity Road. Widen from two lanes to five lanes.</td>
<td>Southside Boulevard -Cloverdale Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Southside Boulevard – Happy Valley Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Happy Valley Road – McDermott Road</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>McDermott Road – Meridian Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Meridian Road – Eagle Road</td>
<td>2035</td>
</tr>
<tr>
<td>Bowmont Road. Funding shown is only to construct a two-lane section</td>
<td>State Highway 45 west</td>
<td>2015</td>
</tr>
<tr>
<td>Cloverdale Road. Widen from two lanes to five lanes. Includes widening of overpass at I-84.</td>
<td>Lake Hazel Road – Chinden Boulevard</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Columbia Road – Lake Hazel Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Lake Hazel Road – Amity Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Amity Road – Overland Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Overland Road - Franklin Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Franklin Road – Ustick Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Ustick Road – Chinden Blvd</td>
<td>2025</td>
</tr>
<tr>
<td>Fairview Avenue. Widen from five lanes to seven lanes.</td>
<td>Meridian Road-Orchard Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Meridian Road - Locust Grove Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Locust Grove Road – Eagle Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Eagle Road – Cloverdale Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Five Mile Road - Maple Grove Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Maple Grove Road - Cole Road</td>
<td>2025</td>
</tr>
</tbody>
</table>

For information on air quality conformity, please visit: http://www.compassidaho.org/products/aq-demo.htm
Table 5-12: Year of Expenditure for Funded Corridors and Partial Corridor Segments

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Section</th>
<th>Year of Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin Road. Widen from two lanes to five lanes.</td>
<td>Star Road – McDermott Road</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>McDermott Road – Black Cat Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Black Cat Road – Ten Mile Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Ten Mile Road - Linder Road</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Touchmark Way (~1000’ east of Eagle Road) - Five Mile Road</td>
<td>2015</td>
</tr>
<tr>
<td>I-84.a Widen from four lanes to eight lanes. Includes reconstruction of</td>
<td>Garrity Interchange - Meridian Interchange</td>
<td>2011</td>
</tr>
<tr>
<td>Garrity Interchange and existing over/underpasses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-84.b Widen from four lanes to eight lanes. Includes interchange</td>
<td>Cole/Overland Interchange-Isaacs Canyon Interchange</td>
<td>2011</td>
</tr>
<tr>
<td>reconstruction at Orchard, Vista, Broadway and Gowen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orchard Interchange</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>Vista Interchange</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>Vista - Broadway widening</td>
<td>2011</td>
</tr>
<tr>
<td>I-84.c Exit 29-Garrity Interchange. Widen from four lanes to six lanes.</td>
<td>Franklin Boulevard – Garrity Boulevard</td>
<td>2015</td>
</tr>
<tr>
<td>includes reconstruction of Franklin and Nampa Boulevard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interchanges and existing over/underpasses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Hazel Road. Happy Valley - Eisenmann Road (including Gowen Road</td>
<td>Locust Grove to Pleasant Valley Road - construct to five lanes</td>
<td>2015</td>
</tr>
<tr>
<td>Realignment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linder Road. Kuna Mora Road-Ustick Road. Widen/construct to five lanes.</td>
<td>Franklin Road to Chinden Boulevard - Construct</td>
<td>2025</td>
</tr>
<tr>
<td>Includes a rail crossing in Kuna and an overpass at I-84.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linder Road: Ustick Road-Beacon Light Road. Widen from two lanes to five</td>
<td>Ustick Road to Chinden Boulevard</td>
<td>2025</td>
</tr>
<tr>
<td>lanes.</td>
<td>Franklin Road - Ustick Road</td>
<td>2025</td>
</tr>
<tr>
<td>Meridian Road. Complete corridor improvements to five lanes. Includes</td>
<td>Franklin Road – Fairview Avenue</td>
<td>2015</td>
</tr>
<tr>
<td>partial couplet involving Main Street and Meridian Road.</td>
<td>Fairview Avenue – Ustick Road</td>
<td>2035</td>
</tr>
<tr>
<td>State Highway 16. Construct limited access highway with</td>
<td>State Highway 44 to US 20/26 - construct to four lanes with river crossing</td>
<td>2015</td>
</tr>
<tr>
<td>interchanges and overpasses at State Highway-44, US 20/26, Ustick Road,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklin Road, and I-84.</td>
<td>Connect State Highway 16 from State Highway 44 to US 20/26</td>
<td>2015</td>
</tr>
<tr>
<td>State Highway 44. (State Street). Construct to seven lanes.</td>
<td>Glenwood Street to 36th Street</td>
<td>2035</td>
</tr>
</tbody>
</table>
Table 5-12: Year of Expenditure for Funded Corridors and Partial Corridor Segments

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Section</th>
<th>Year of Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten Mile Road</td>
<td>Lake Hazel Road - Chinden Boulevard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake Hazel Road- Victory Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Victory Road – Overland Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Overland Road – Franklin Road</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>New Interchange at I-84</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>Cherry Lane - Ustic Road</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Ustic Road - Chinden Boulevard</td>
<td>2025</td>
</tr>
<tr>
<td>Ustic Road. Widen from two lanes to five lanes.</td>
<td>Caldwell/Nampa Boulevard-Curtis Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caldwell/Nampa Boulevard– Midland Road</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>Midland Road – Franklin Boulevard</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Franklin Boulevard – Can-Ada Road</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>Can-Ada Road -- Star Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Star Road – Black Cat Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Black Cat Road – Ten Mile Road</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Ten Mile Road – Meridian Road</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>Meridian Road – Locust Grove Road</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Locust Grove Road – Leslie Drive</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>1/4 mile east of Eagle Road – Five Mile Road</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Cole Road - Curtis Road</td>
<td>2035</td>
</tr>
</tbody>
</table>

Surrounding Counties

Boise County – The larger cities within Boise County (Horseshoe Bend and Idaho City) have roadway jurisdiction. The county has a road and bridge department with jurisdiction over the unincorporated areas of the county.

Elmore County – Elmore County also has multiple roadway jurisdictions. The cities in Elmore County (Glenns Ferry and Mountain Home) have jurisdiction over their roadways. There are also three highway districts: Atlanta Highway District, Glenns Ferry Highway District, and Mountain Home Highway District with roadway jurisdiction over the remainder of the county.

Gem County – The City of Emmett has roadway jurisdiction, and the county has a road and bridge department with jurisdiction over the unincorporated areas of the county.

Payette County – The cities in Payette County (Fruitland, New Plymouth, and Payette) have roadway jurisdiction. There is one highway district (Highway District #1) with roadway jurisdiction over part of the unincorporated areas of the county, plus there is a Payette County Road Department.

There were no criteria available for creating a priority list for all categories in order. The projects in Table 5-13 are not subject to the urbanized area planning requirement and are shown for informational purposes. It has not been determined which projects will be funded in the plan.
Summaries describing individual corridors can be found on the following pages. Corridors are listed in alphabetical order.

The Corridors Defined

Many of the corridors discussed in this plan traverse multiple jurisdictions and several of these roadways connect county to county. The next several pages contain summaries of detailed information for the individual corridors discussed in this plan. Each corridor summary contains the following information:

- Why the corridor is important to the region
- Characteristics of the corridor and how it is used
- Recommendations for the corridor to meet Communities in Motion goals
- Land use decisions required on this corridor to implement Communities in Motion goals (or, actions needed to occur to preserve the corridor for the future improvements)
- Opportunities or challenges for the corridor
- Past, current, or programmed improvements to the corridor
- Recommended investments in the funded portion of Communities in Motion
- Additional desired improvements (illustrative) or other actions needed in the future—perhaps beyond 2035

To implement the corridor improvements, each needs to be studied to determine the design for each improvement. There will most likely be multiple designs for each corridor as it passes through various land uses. This is “context sensitive” planning. For example, a roadway or bus route must fit within the land use that surrounds it. Therefore, a route through a neighborhood will look and function differently than a route through a more rural area or one that is considered regional in nature.

These corridor summaries are subject to revision as new work or evaluations are completed.

18 This project no longer under consideration. It was an early candidate for GARVEE financing, but costs and environmental issues have taken it out of consideration.
Amity Road

Amity Road connects Nampa with Boise south of I-84.

WHY THIS CORRIDOR MATTERS

Amity Road is one of only three corridors south of I-84 that connects Nampa to Boise. It also serves as an alternative route between the Garrity and Meridian Interchanges during high levels of congestion and delay on I-84.

This corridor extends east from Southside Boulevard in Southeast Nampa to Maple Grove Road in Southwest Boise.

Amity Road is two lanes and posted speeds range from thirty-five miles per hour to fifty miles per hour. It serves rural and residential land uses. A large number of the intersections along the corridor do not have signals. Travel demand along the corridor could be up to 34,000 vehicles per day by 2035. This increase in travel demand is dependent upon the Locust Lane/ Lake Hazel Road corridor becoming a primary east - west route connecting to I-84 at the Isaacs Canyon Interchange.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for Amity Road Corridor to meet CIM goals:

- Consider widening portions of the corridor to accommodate increases in future travel demand.
- Consider the signalization of key intersections.

Recommendations for Amity Road Corridor Public Transportation:

- As an arterial road, transit services would be expected the length of the corridor with transfers at major north-south routes operating on the section-line (one-mile grid).
- Development and street design should promote more direct access to transit stops on Amity, with provision for shelters at transfer or other high activity locations (schools, shopping centers, etc.)

Land use decisions needed to implement the plan:

- Local governments along the corridor are recommended to focus development in designated growth areas.
- Access to the corridor needs to be managed and additional right-of-way needs to be preserved to ensure the corridor’s long-term function as an arterial.
CHALLENGES AND OPPORTUNITIES

As the area south of I-84 continues to develop and the capacity of the interstate reached, demand on Amity Road will increase. The need for safety/operational improvements (such as intersection signalization or roundabouts), access management and right-of-way preservation will increase as traffic flows increase.

Past and Current Investments through 2015

As the cities of Nampa, Meridian, and Boise grow south of I-84, the function of Amity Road has evolved from that of a rural section line road to a minor arterial.

The overpass project at King’s Corner overpass in Nampa made the western end of the corridor safer and more accessible. The bridge crossing is funded through a local bond.

The City of Nampa obtained high priority funding through SAFETEA-LU to widen Amity from Chestnut to the King’s Corner overpass. The various stages of this project will occur through 2011. $8,350,000

Additional roundabouts would be considered in lieu of signals or four-way stops. ACHD has completed a study of roundabouts for its portion of Amity.¹

Funded Investments through 2035

- **Amity Road: Southside Blvd-Cloverdale Road. Widen from 2 lanes to 5 lanes.**
 - Estimated Cost: $67,528,000

Unfunded Improvements through 2035

¹ Amity Corridor Roundabout Study found at http://www.achdidaho.org/Projects/Default.aspx
Black Cat Road carries a significant amount of traffic between its termini at US 20/26 and King Road, a span of thirteen miles. In 2035, the corridor is expected to carry over 19,000 trips per day on its busiest segment north of Franklin Road, and 5,000 trips per day on the least traveled section north of Kuna Road. The estimates of increased traffic demand assumes a new SH 16 river crossing that connects SH 44 to US 20/26 in the McDermott Road vicinity, and the widening and completion of an interchange at Ten Mile Road.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for Black Cat Road Corridor to meet CIM goals:

- Widening of the corridor to five lanes is recommended from Franklin Road to Chinden Boulevard.
- Support a corridor plan for Black Cat Road

Recommendations for Black Cat Road Corridor Public Transportation:

- As a section line arterial, Black Cat Road will have local bus service with connections to east-west routes and a future fixed-guideway system based on the Treasure Valley High Capacity Transit Study.
- As with other corridors, provision should be made for direct connections to transit stops from adjacent development. Transit stops should be considered in street design, including provision for bus shelters and potential bus pullouts.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the Black Cat corridor is managed to preserve its function as an arterial.
CHALLENGES AND OPPORTUNITIES

Black Cat Road has the potential to evolve as a north-south local access route between McDermott and Ten Mile Roads. An Interchange is currently under construction at Ten Mile Road and scheduled to open summer 2011. This leaves the Black Cat corridor serving as a minor arterial corridor between the two roadways. While it would carry more traffic than it does today and is a long corridor in terms of length (13.6 miles), it will not be a primary regional route due to its lack of access to I-84, no river crossing and its proximity to SH 16/McDermott Road, which is planned, although unfunded, to be a major north-south route.

The rail crossing north of Franklin Road will be a challenge with increased traffic on Black Cat Road and the plan for the rail corridor as a future passenger rail or bus rapid transit facility. Over one-hundred twenty homes are within one-hundred feet of the corridor between Franklin Road and Chinden Boulevard.

The increase in travel demand on this corridor is partly due to the level of development anticipated in North Meridian. The North Meridian area is a twelve-square mile area bound by U.S. 20/26, Ustick Road, McDermott Road and Eagle Road. This area could contain as many as 52,000 people by 2035.

Past and Current Investments through 2015

<table>
<thead>
<tr>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>In past long range transportation plans, the proposed SH 16 river crossing showed a connection to Black Cat Road and Ten Mile Road. A river crossing is no longer a potential given the plans for a SH 16 river crossing in the vicinity of McDermott Road.</td>
<td>Widen Black Cat Road to five lanes from Franklin Road to US 20/26 (Chinden Boulevard) in the City of Meridian. Estimated Cost: $38,100,000 Raised medians may be warranted in the higher traffic section due to forecasted traffic demand.</td>
</tr>
</tbody>
</table>

No projects are recommended at this time.
WHY THIS CORRIDOR MATTERS

Today, some might not see the importance of this corridor. The road is lightly traveled and passes through agricultural areas and sagebrush; its length and undeveloped status, however, establish its importance as a future east-west route. When connected to SH 45 via Bowmont Road and improved in other sections to a better two-lane highway, Kuna-Mora Road can begin to offer travelers in Ada and Canyon counties an alternative route. While slated for minor improvements during the next twenty-five years, Kuna-Mora Road should be preserved to allow for an expressway with potential grade-separated interchanges.

Current volumes along the corridor range from 800 on Bowmont Road in Canyon County to 2,000 near Cloverdale Road. In 2035, the corridor is forecasted to carry just 5,000 to 9,000 trips per day. The region should consider long-term travel alternatives to I-84, and proposed and potential development may preclude Kuna-Mora as a future expressway unless right-of-way and access management are implemented. Travel forecasts with some of the planned communities proposed in area would push traffic on Kuna Mora over 80,000 near I-84.

The corridor covers nearly twenty-five miles between its western terminus at SH 45 (via Bowmont Road) and its connection with I-84 south of Boise. Much of the western end of the corridor is irrigated farmland. Between SH 45 and McDermott Road, over eighty homes are within a quarter mile of the corridor. Bureau of Land Management property breaks the continuity between McDermott and Swan Falls Roads. Farmland is irrigated from the Mora Canal, south of Kuna. While much of the land is held in larger parcels, there are many one- to five-acre parcels along the road, with many owner-occupied homes in the area. Subdivisions are increasing in number.

Further east, land along the corridor turns into non-irrigated land and scattered non-residential uses, including a gun club and a model airplane flight area. The Bureau of Land Management owns a small lake and wetlands near I-84.

Goals for Communities in Motion (CIM)
Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Bowmont/Kuna-Mora Road Corridor to meet CIM goals:
- Kuna-Mora corridor from McDermott through to I-84 (Blacks Creek interchange) is recommended to be preserved as an expressway. From SH 45 to McDermott is recommended to be a four- or five-lane arterial.
- Alignment studies are needed within one to two years to evaluate options to connect Bowmont with Kuna-Mora around the BLM land near McDermott. This study should include an evaluation of a future connection with McDermott as an expressway. An alignment study is also needed to consider alternatives from Eagle Road to Cloverdale. Interchange locations and footprints need to be established within one to two years.

Recommendations for Bowmont/Kuna-Mora Road Corridor Public Transportation:
- This corridor is a likely candidate for major fixed-route services such as, commuter bus service, given its regional connections.
- Park-and-ride facilities should be considered near the major intersections.

Land use decisions needed to implement the plan:
- To maintain the right-of-way to construct a future expressway and interchanges, local governments along the corridor should stipulate a minimum setback of 100 feet from the centerline of Kuna-Mora. At the intersections of Kuna-Mora with major roads, setbacks should be negotiated to preserve future interchanges.
- Direct connections to Kuna-Mora should be conditioned as temporary pending establishment of future backage and frontage roads.
CHALLENGES AND OPPORTUNITIES

Kuna-Mora Road's rural character is its challenge and its opportunity. Some believe that this rural road should be left alone until it is really needed. The issue is that development has already been proposed along the corridor, meaning that it could be far more expensive – and perhaps impossible – to create the kind of expressway facility that can offer a true alternative to I-84. As with any major road, future land uses along the corridor need to be planned with an eye toward regional needs—not just reacting to the immediate market.

East of Clovevalde there are few environmental or social challenges except for the tank trail from Gowen Field to the training range. This non-traditional intersection will need special attention in the future. Between SH 45 and Swan Falls there are as many as one-hundred fifty homes near the corridor. BLM land lies in the corridor south of Kuna-Mora Road, and the Mora Canal interrupts the continuity from Swan Falls Road to Eagle Road.

While preservation of the corridor seems prudent, construction of an expressway or even preservation of right-of-way is not funded in the 2035 funded plan. This improvement would be very costly. Many planning issues such as jurisdiction, access management, and corridor preservation will need to be addressed. It is also important to note that upgrading this facility to an expressway does not make sense without the north-south connection to I-84. (See the McDermott Road description.)

Past and Current Investments through 2015

<table>
<thead>
<tr>
<th>Invested Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2002 the COMPASS Board agreed that Kuna-Mora Road should be the future east-west arterial. Several studies have been conducted related to the corridor: Kuna Mora Phase 1(^1) Southwest Boise Transportation Study Kuna Mora Phase 2 (on hold)(^2) Western Canyon Arterial Study(^3)</td>
<td>Extend Bowmont Road. Estimated Cost: $6,000,000</td>
</tr>
</tbody>
</table>

1 This study can be found at http://www.achdidaho.org/Projects/ProjectsPast.aspx
2 Information on Phase 2 can be found at http://www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=127
3 Materials on the Western Canyon Arterial Study can be found at http://www.nampahighway1.com/index_files/CANYONCOUNTYWESTERNROUTE.htm
Cherry Lane/Fairview Avenue

Cherry Lane/ Fairview Avenue connects major cities in Ada and Canyon Counties.

WHY THIS CORRIDOR MATTERS

Cherry Lane stretches twenty miles from North Middleton Road in Canyon County near the Nampa/Caldwell city limits and I-84, to downtown Boise, changing to Fairview Avenue at Meridian Road. This east-west corridor connects Nampa, Caldwell, Meridian and Boise and serves as an alternate to I-84. The road intersects several key north-south corridors including Middleton Road, Can-Ada Road, McDermott Road, Ten Mile Road, Meridian Road, Eagle Road, Cole Road, Orchard Road, and eventually connects with Chinden.

Much of Cherry Lane/Fairview Avenue is five lanes with signalized intersections within the Meridian and Boise city limits. A good deal of employment exists along this road with more intense commercial and industrial uses east of Meridian Road. Future land use plans show substantial mixed-use development in the vicinity of Eagle Road. The corridor borders extensive commercial activities in Boise, which is bounded by low to medium-density residential.

West of Black Cat Road, the road becomes two lanes with primarily unsignalized intersections. In the west, adjoining property includes a shopping center, agricultural uses and residential developments that transition to lower density housing in Meridian. This corridor is identified for main street type of development, compact neighborhood and residential subdivisions north of Nampa.

Bus service does not exist on this corridor west of Boise, but service is planned for Meridian in the future. For the majority of its length, Cherry Lane/Fairview Avenue parallels the rail corridor at a distance of a half-mile to a mile. With regional transit on the rail corridor, the Cherry Lane/Fairview Avenue corridor would offer more local transit services. In the event rail service begins, transit will be needed to provide access to the stations; Cherry Lane/Fairview Avenue is the likely route to support such service.

Current average weekday volumes range from 1,400 west of Northside Boulevard to 32,000 west of Eagle Road. By 2035, the travel demand on this corridor could range between 11,000 and 74,000. By 2035 the road, for the entire length of the corridor, is planned to function as a principal arterial serving high traffic volumes, long trips and major urban areas and activity centers.

Goals for Communities in Motion (CIM)
- Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
- Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
- Environment: Minimize transportation impacts to people, cultural resources, and the environment.
- Information: Coordinate data gathering and dispense better information.

Recommendations for Cherry Lane/ Fairview Avenue Corridor to meet CIM goals:
- Widen and signalize corridor to support its future status as a principal arterial.
- Future improvements should respect future plans for transit service.

Recommendations for Cherry Lane/ Fairview Avenue Corridor Public Transportation:
- This corridor is still a candidate for fixed-guideway service (bus rapid or light rail) but is more likely to have high-frequency local bus service. The Treasure Valley High Capacity Transit Study considers Fairview a possible candidate.¹
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.

Land use decisions needed to implement the plan:
- Land-use decisions need to ensure transit supportive densities in the area of planned transit/rail stations and other designated growth areas and discourage development outside existing urban areas.

¹ This study can be found at http://compassidaho.org/reports.htm under Fiscal Year 2009 Reports.
CHALLENGES AND OPPORTUNITIES

While not flagged for as substantial an increase in transit service as Franklin Road, the corridor between Meridian and Boise has a potentially critical role to play. Cherry Lane/Fairview Avenue is one of two corridors bounding the Boise-cutoff rail corridor. Given the planned increase in transit service along Franklin Road and the potential for future passenger rail service, the importance of accommodating bus operations and “non-motorized” modes of travel is critical.

Given the extensive amount of existing and projected commercial development and adjacent residential uses, Cherry Lane/Fairview Avenue will continue to provide regional connectivity as a principal arterial. Access issues and right-of-way constraints will mean a relatively slow-speed corridor, however. By 2035, most intersections from Eagle Road to Curtis Road will exceed 100,000 vehicles per day, with Eagle and Fairview at a daunting 134,000 vehicles entering the intersection.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once part of the original U.S. highway system, this corridor is still significant for commercial uses.</td>
<td>Fairview Avenue, Meridian Road to Locust Grove Road – Widen roadway from five (5) to seven (7) lanes and complete curb, gutter, and sidewalk system. $6,333,000</td>
<td>Widen Cherry Lane from two lanes to five lanes between Middleton Road in Nampa to Ten Mile Road in Meridian. Estimated Cost: $63,885,000</td>
</tr>
<tr>
<td>The intersection of Fairview Avenue and Eagle Road was evaluated in the High Volume Intersection Study. 2</td>
<td>Fairview Avenue, Locust Grove Road to Orchard Street – Widen roadway from five (5) to seven (7) lanes and complete curb, gutter, and sidewalk system. Estimated Cost: $47,000,000</td>
<td>An interchange at Middleton and Cherry Lane is still a potential.</td>
</tr>
<tr>
<td>The Karcher Interchange was completed in 2006 and resulted in construction of a regional shopping center.</td>
<td></td>
<td>Intersections at Maple Grove and Milwaukee will be nearing 100,000 vehicles per day. Special intersection designs along Cherry Lane/Fairview Avenue are essential.</td>
</tr>
<tr>
<td>2014: Fairview Avenue Access Management, Linder Road to Orchard Street. Install median islands and/or barriers to control access, improve traffic operations, and improve safety. Left turn and/or U-turn pockets will be installed at 1/2-mile intervals, approximately 1/4-mile either side of major intersections; and driveway approaches may be eliminated or redesigned. Estimated Cost: 1,350,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACHD has completed a concept study of portions of Fairview. 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 This three-volume study can be found at http://compassidaho.org/reports.htm under Fiscal Year 2008 Reports.

3 This can be viewed at http://www.achdidaho.org/Projects/Default.aspx
WHY THIS CORRIDOR MATTERS

North-south travel has not been as prominent a concern in previous plans as east-west travel. But regional growth is changing the pattern of travel, and the shift in residential and employment growth will challenge existing north-south roads. Given the barriers presented by the foothills, the Boise River, the “benches” and I-84, north-south corridors are often discontinuous. Eagle Road (SH 55) was widened in the 1990’s and overwhelmed by the rapid pace of development. Most north-south roads are bordered by significant residential areas and businesses, constraining the ability to widen roads in response to travel demand.

The connection of Cloverdale Road to SH 55 via the Three Cities River Crossing would affect travel patterns, shifting part of the demand on the Eagle Road and Glenwood/Cole corridors. If and when this occurs, Cloverdale would require investments. Cloverdale Road is classified as a minor arterial and crosses I-84 with limited capacity due to the two-lane configuration of the overpass. In addition to the corridor’s importance in vehicle movement, it could be major transit corridor. As such, the location of new major activity centers will need to be considered. By 2035, Cloverdale Road traffic volumes could be 21,000 to 40,000 vehicles per day north of I-84 and 12,000 to 25,000 south of I-84. Cloverdale Road connects to Lake Hazel Road, which will be a major east-west route from Middleton Road west of Nampa to I-84. It also offers the only continuous connection from Chinden Boulevard south to Kuna-Mora Road, proposed in the long term as an expressway. This makes Cloverdale Road a 14-mile long corridor connecting major employment centers of HP and Boise Research Center to the most southern east-west route, Kuna-Mora Road. Note that the forecasted volumes do not reflect any connection to I-84 or the construction of the Three Cities River Crossing. Many citizens have noted a desire to have an interchange on one or both roadways.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Cloverdale Road Corridor to meet CIM goals:

- As urban arterials, either corridor will need context-sensitive design treatments.
- Widening of the overpass will be essential, with priority given to the corridor selected for connection to Three Cities River Crossing.

Recommendations for Cloverdale Road Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Both corridors are likely candidates for major fixed-route services given the residential and commercial uses. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- As a major transit corridor, transit-oriented development concepts should be applied to developments within a quarter mile of Cloverdale Road and Five Mile Road. Activity centers should be considered along the corridors with transit stop features such as shelters, lighting and information kiosks.
- Development along Cloverdale Road south of I-84 should recognize the potential traffic increases when Kuna-Mora Road is built to expressway standards.
CHALLENGES AND OPPORTUNITIES

Extensive residential, educational and commercial development line Cloverdale Road. Many subdivisions have their sole outlet onto the corridor, so high volumes of traffic would be difficult. Commercial activity is fairly balanced between the two corridors, but Boise City emphasizes Five Mile Road in its comprehensive plan as the target for development. Boise City considers Cloverdale Road more of a boundary between Boise and Meridian. Boise’s plan also calls for a “planned community” with activity centers and a diversity of housing densities and types at the south end of Cloverdale and Five Mile Roads. Cloverdale Road would be more peripheral to this planned community, but it would provide better access to a future east-west expressway planned along Kuna-Mora Road. Ada County Highway District has worked with the City of Boise on a Southwest area plan to refine the connections south to Kuna Mora Road. See below for the link to this and other related studies.

Without additional capacity on Eagle Road (SH 55), north south travel in this area will be difficult.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>An ACHD study considered design concepts for Cloverdale Road and Five Mile Road. These can be viewed at http://www.achdidaho.org/Projects/Default.aspx</td>
<td>Cloverdale Road: Lake Hazel Road-Chinden Blvd. Widen from 2 lanes to 5 lanes (partially funded). Estimated Cost: $71,729,000 (includes cost to widen overpass)</td>
<td>Given the potential for major transit services along corridor, investment in transit stop facilities should be priorities. These might include bus pull-outs, shelters, and connecting walkways.</td>
</tr>
<tr>
<td>A Southwest Boise plan to connect Eagle and Cloverdale to Kuna Mora Road can be viewed at http://www.achd.ada.id.us/projects/PublicProject.aspx?ProjectID=74</td>
<td></td>
<td>Cloverdale Road Overpass widening</td>
</tr>
<tr>
<td>2003-2009 Cloverdale Road/ Fairview Avenue Intersection. Widened Cloverdale Road legs to 6 lanes with curb, gutter and sidewalk, added right turn lanes on Fairview Ave. Actual Cost: $5,420,291</td>
<td></td>
<td>No improvements south of Lake Hazel Road.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An evaluation of a Cloverdale interchange should be completed.</td>
</tr>
</tbody>
</table>
WHY THIS CORRIDOR MATTERS

Dewey Road will provide the City of Emmett and Gem County more direct access to I-84 and greatly enhance connectivity in the area. The proposed corridor would extend the existing Dewey Road in the City of Emmett across approximately four miles of land owned by the Bureau of Land Management (BLM) and connect to I-84 at the existing Black Canyon Interchange. This project interacts with the Indian Valley Highway corridor proposed through the Idaho Transportation Department’s “Connecting Idaho” program. It also ties into the New Payette corridor proposed by Payette County. Together, these projects provide more connectivity in the western portion of the region.

The New Payette corridor provides a more direct alignment from I-84’s Black Canyon Interchange (near the proposed Dewey Road intersection) roughly along Old SH 30 and west along SH 52 to the City of Payette.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Dewey Road & New Payette Corridor to meet CIM goals:

- The proposed improvements provide more direct connection to the City of Emmett.
- Support from the Idaho Transportation Department, the City of Emmett, Gem and Payette Counties is needed.

Recommendations for Dewey Road & New Payette Corridor Public Transportation:

- A parcel on the north side of Black Canyon Interchange at I-84 is a prime location for a park and ride lot and transit shuttle to the main transit line.

Land use decisions needed to implement the plan:

- Gem and Payette Counties (especially Gem) are experiencing residential development. Land in the vicinity of these projects should be preserved for future improvements.
Regional Connection

CHALLENGES AND OPPORTUNITIES

Dewey Road – There are some major topographic challenges with the proposed alignment of this roadway. Those challenges include bluffs and a river crossing. There are also opportunities in that the area is not currently developed. The County can provide oversight in the area to ensure that the corridor is preserved.

New Payette Corridor - The proposed improvements include a realignment of existing roadways. This may prove to be beneficial in the design of this project.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gem County obtained a grant to conduct a corridor study on the Dewey Road corridor. This study was conducted in FY 2006-2007.</td>
<td>Construction of Dewey Road and the realignment of the New Payette corridor are desired. Estimated Costs: Dewey Road - $22,410,000, New Payette Corridor - $14,250,000.</td>
<td></td>
</tr>
</tbody>
</table>

Re

Regional Connection
Five Mile Road

Five Mile Road is vital to the region as north-south route.

WHY THIS CORRIDOR MATTERS

North-south travel has not been as prominent a concern in previous plans as east-west travel. But regional growth is changing the pattern of travel, and the shift in residential and employment growth will challenge existing north-south roads. Given the barriers presented by the foothills, the Boise River, the “benches” and I-84, north-south corridors are often discontinuous. Eagle Road (SH 55) was widened in the 1990’s and overwhelmed by the rapid pace of development. Most north-south roads are bordered by significant residential areas and businesses, constraining the ability to widen roads in response to travel demand.

Five Mile Road is already classified as a minor arterial that crosses I-84 with limited capacity due to the two-lane configuration of the overpass. In addition to the corridor's importance in vehicle movement, it could be major transit corridor. As such, the location of major activity centers will need to be considered. By 2035, without the Three Cities River Crossing, volumes on Five Mile Road could be from 7,500 to 35,000 north of I-84 and 10,000 to 22,000 south of I-84. Five Mile Road connects to Lake Hazel Road, which is planned to be a major east-west route from Middleton Road west of Nampa to I-84. Note that these forecasted volumes do not reflect any connection to I-84 or the construction of Three Cities River Crossing. Many citizens have noted a desire to have an additional interchange between Eagle Road Interchange and Wye Interchange.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Five Mile Road Corridor to meet CIM goals:

- As urban arterials, either corridor will need context-sensitive design treatments.
- Widening of the overpasses will be essential to provide an efficient north-south connection to Lake Hazel Road.

Recommendations for Five Mile Road Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Corridor is likely a candidate for major fixed-route services given the residential and commercial uses. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- As a major transit corridor, transit-oriented development concepts should be applied to developments within a quarter mile of Five Mile Road. Activity centers should be considered along the corridors with transit stop features such as shelters, lighting and information kiosks.
CHALLENGES AND OPPORTUNITIES

Extensive residential, educational, and commercial developments line Five Mile Road. Many subdivisions have their sole outlet onto this corridor, so high volumes of traffic would be difficult. Boise City emphasizes Five Mile Road in its comprehensive plan as the target for development.

Boise’s plan calls for a “planned community” with activity centers and a diversity of housing densities and types at the south end of Five Mile Road.

Without additional capacity on Eagle Road (SH 55), north south travel in this area will be difficult.

Past and Current Investments through 2015

A Five Mile Road interchange was put into the regional plan in 1996 but subsequent analysis indicated costs for this interchange would exceed $100 million due to its proximity to the Wye interchange.

In 2002, ACHD completed the 5 lane extension from Treeline Court to Chinden Boulevard – providing an additional connection to Boise’s West Bench. $2,250,000.

An ACHD study considered design concepts for Cloverdale Road and Five Mile Road. These can be viewed at http://www.achdidaho.org/Projects/Default.aspx

2010: Five Mile Road / Fairview Avenue Intersection – Right turn lanes on all legs, two left turn lanes on Five Mile, street lights, curb, gutter, sidewalk and bike lanes. Project includes design, right-of-way and construction anticipated to be complete September 2010. Approximate Cost: $4,700,000

2014-Five Mile Road, Franklin Road to Fairview Avenue – Project includes construction work on Five Mile Road, not including the Fairview intersection. Widen to five (5) lanes with shoulder, sidewalk, and railroad crossing improvements. $9,534,000.

Funded Investments through 2035

- Five Mile Road Overpass
 - Widening to 5 lanes from Fairview Avenue to Treeline Court (south of Chinden Boulevard).

Unfunded Improvements through 2035
Franklin Road stretches fourteen miles from Can-Ada Road in Nampa near the Idaho Center to South Roosevelt Street in Boise where it transitions to Rose Hill Street which then terminates at Vista Avenue a mile further to the east. This east-west corridor connects Nampa, Caldwell, Meridian and Boise and serves as an alternate to I-84. This corridor also connects several key north-south roads, including Black Cat Road, Ten Mile Road, Linder Road, Meridian Road, Eagle Road, Cole Road, Orchard Road, and terminates at Vista Avenue.

For the majority of its length, Franklin Road parallels I-84 to the south and the Boise Cutoff rail corridor to the north. Generally, Franklin Road is no further than a quarter mile from the rail corridor and no more than a half mile from I-84. This unique location is why this road has been identified for substantial future transit service although no service outside of Boise is currently provided. The location makes it ideal for transit service that would feed future rail stations and/or provide through service to act as an alternate to the I-84 corridor.

Land uses along the corridor include industrial and commercial in Nampa transitioning to agricultural and low density housing in west Meridian. In the vicinity of Meridian Road, Franklin Road creates the southern edge of downtown Meridian and is bordered by a variety of land uses, housing, industrial and commercial. Through Boise the road passes through a variety of industrial, residential, and commercial uses.

Current average weekday volumes range from 7,400 east of McDermott Road to 38,000 near Boise Towne Square Mall. By 2035, travel demand could range between 35,000 and 50,000 assuming improvements are made to other east-west routes such as I-84. Substantial improvements are planned for Franklin Road, including widening in Meridian and Boise. The portion of the road west of I-184 is planned to function as a principal arterial serving high traffic volumes, long trips and major urban areas and activity centers by 2035.

Goals for Communities in Motion (CIM)
- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Franklin Road Corridor to meet CIM goals:
- Right-of-way dedication and improvement requirements for transit, bicycle and pedestrian supportive facilities.
- Future improvements and development activity along the corridor should recognize and respond to the critical transit and non-motorized context of the corridor. Involve Valley Regional Transit in development processes.
- Widen and signalize corridor to support its future status as a principal arterial.

Recommendations for Franklin Road Corridor Public Transportation:
- Corridor is currently in use for intercounty transit service.
- This corridor is still a candidate for fixed-guideway service (bus rapid or light rail) under the Treasure Valley High Capacity Transit Study.
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs. Park-and-ride sites, particularly on the west end of the corridor should be considered.

Land use decisions needed to implement the plan:
- Land-use decisions need to ensure transit supportive densities in the area of planned transit/rail stations and other designated growth areas and discourage development outside existing urban areas.
- Any land development along the corridor should include dedications to ensure accommodation of future demand.
CHALLENGES AND OPPORTUNITIES

Given the planned increase in transit service along Franklin Road the importance of accommodating bus operations and “non-motorized” modes of travel is critical. In addition, given the proximity to the rail corridor, Franklin Road is within walking distance to five of the seven potential rail stations identified in the 2003 study, “Rail Corridor Evaluation Study.” Franklin Road is rich in opportunities to provide transit supportive infrastructure. The Treasure Valley High Capacity Transit Study1 has identified this corridor as a candidate for a future bus rapid transit or light rail service.

The challenge will be that as congestion along the I-84 corridor increases Franklin Road will be under pressure to accommodate not only diverted automobile traffic but significant increases in pedestrian, bicycle, and public transit.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widened from Linder Road to Main Street in Meridian in 1998 for $2,500,000</td>
<td>Preliminary Development - Franklin Road, Black Cat Road to Ten Mile Road – Widen roadway from two (2) to five (5) lanes with curb, gutter, and sidewalks. Project includes the Franklin Road and Black Cat Road intersection (scheduled for construction in 2014). $11,871,000</td>
<td>Consider operational enhancements along the corridor to support transit efficiency such as signal preemption, and queue jump lanes.</td>
</tr>
<tr>
<td>Widened from Main Street in Meridian to Eagle Road in 2005 for $10,900,000</td>
<td>Franklin Road: Idaho Center Road-Black Cat Rd Widen from 2 lanes to 5 lanes. $34,740,000</td>
<td></td>
</tr>
<tr>
<td>2012: Ten Mile Road to Linder Road. Widen roadway from two (2) to five (5) lanes with curb, gutter, and sidewalks. Estimated Cost: $5,819,000</td>
<td>Plan for and preserve right of way for transit and non-motorized facilities.</td>
<td></td>
</tr>
<tr>
<td>2011/12: Touchmark Road to Five Mile Road. Widen roadway from two (2) to five (5) lanes with curb, gutter, and sidewalks. Project includes Cloverdale intersection and right-of-way. Estimated Cost: $17,513,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The Treasure Valley High Capacity Transit Study can be found at http://compassidaho.org/reports.htm under the Fiscal Year 2009 reports.
Happy Valley Road
Happy Valley Road is important because it connects south Nampa to I-84

WHY THIS CORRIDOR MATTERS
Happy Valley Road runs from I-84 south to Bowmont Road. The northern end is the most congested. Happy Valley Road merges into Stamm Lane, which connects the corridor to Garrity Road and the Garrity Interchange (Exit 38), the most congested intersection in Canyon County. Major new retail facilities have opened at the north end of Happy Valley, contributing traffic to one of the more congested areas in Canyon County.

Going south from this point, Happy Valley Road provides access to residential uses and is mainly used for commuter traffic. The far southern portion is rural in nature and connects with Bowmont Road. Bowmont Road is part of the Bowmont/Kuna-Mora Road corridor that eventually is anticipated to become an alternate for I-84 through its connection with McDermtt Road. Current traffic volumes range from 300 north of Bowmont to 8800 north of Orchard. By 2035, traffic volumes could range from 1,000 (south end) to 19,000 (north end).

North of the Garrity Interchange, the road is known as Can-Ada Road. Can-Ada Road does not provide a connection over the Boise River, but does provide access throughout much of northern Ada and Canyon Counties as it serves as the County Line.

Goals for Communities in Motion (CIM)
Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Happy Valley Road Corridor to meet CIM goals:
- The proposed improvements provide better connections in the south/central portion of Canyon County.
- Support from the City of Nampa, Nampa Highway District, and Canyon County is needed.

Recommendations for Happy Valley Road Corridor Public Transportation:
- While not a candidate as a major transit corridor, it could be a local fixed-route corridor.
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.

Land use decisions needed to implement the plan:
- As development, both residential and commercial, encroach upon this corridor, land use decisions should take into account the improvements proposed in this plan.
- With the classification of minor arterial, access management should also be considered during land use decisions.
CHALLENGES AND OPPORTUNITIES

The largest challenge along this corridor is to preserve the corridor so that the improvements can be made when funding is available. The new developments along the northern end of Happy Valley Road will spur additional residential and commercial development that could make the improvements to the corridor difficult.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvements to this corridor have historically been made through local funding rather than federal sources.</td>
<td>No projects are recommended at this time.</td>
<td>Happy Valley Road (5 lane) – from Flamingo to Locust Lane, $40,907,000</td>
</tr>
<tr>
<td>2010: Happy Valley Road and Greenhurst Road Round-a-bout.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate Cost: $1,200,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harris Creek/Centerville Road

Harris Creek/Centerville Road provide connections for Boise County.

WHY THIS CORRIDOR MATTERS

Boise County is served by two state highways. SH 21 connects between Ada County and Idaho City, continuing to the northeast into Stanley. SH 55 connects from Ada County and Horseshoe Bend, continuing through Crouch and into Valley County to the north. The two main cities in Boise County, Idaho City and Horseshoe Bend, are divided by mountainous terrain. Harris Creek/Centerville Road connects Idaho City, the county seat, to Horseshoe Bend, the largest city in the county. The existing road is a mountain dirt road that runs in an east-west direction. This road is typically used during the summer months because winter travel is hazardous in wet or ice and snow conditions. The alternate routes are much longer with the most common through the City of Boise (fifty-seven miles) or via Garden Valley (eighty-two miles). These distances are compared to approximately thirty miles on Harris Creek/Centerville Road.

According to the 2000 Census, fifty-two percent of workers living in Boise County commute to Ada County during the week. However, on weekends, there are many recreational trips from Ada County and Canyon County residents.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for Harris Creek/Centerville Road Corridor to meet CIM goals:

- The proposed improvements provide better connections and in some case an option of travel in Boise County.
- Support from the Idaho Transportation Department, Idaho City, the City of Horseshoe Bend and Boise County is needed.

Recommendations for Harris Creek/Centerville Road Corridor Public Transportation:

- No public transportation options have been noted.

Land use decisions needed to implement the plan:

- County is experiencing residential development. The Harris Creek corridor should be preserved so that the cost of the project does not escalate.
Regional Connection

CHALLENGES AND OPPORTUNITIES

Harris Creek/Centerville Road – A safe, all-weather connection between the county seat and the largest city in the county would be beneficial to the residents. The challenge is mainly in the cost of this project, which is 30 miles long through difficult terrain, including narrow canyons and severe slopes. Upgrading the roadway to all weather standards while protecting environmental features will be very expensive. Current traffic volumes are approximately two-hundred vehicles per day, although this could escalate rapidly given the residential activity occurring in the county.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>The County made a major investment in improving the Banks-Lowman Road through Garden Valley in the 1990s. Funded primarily with US Forest Service land funds, the project cost exceeded $20 million.</td>
<td>None, pending further evaluation.</td>
<td>Harris Creek Road is estimated to cost up to $35,000,000 depending on design standards and environmental issues. A lower cost would be possible for a pavement treatment, but speeds would be low given the terrain and tight curves. A more detailed study to provide alternatives and cost estimates, including environmental work, would be needed. Estimated cost: $300-$600,000.</td>
</tr>
</tbody>
</table>
I-84 and I-184

I-84 is vital to the region because it carries the highest volume of traffic.

WHY THIS CORRIDOR MATTERS

Interstate-84 (I-84) and its corresponding route, Interstate-184 (I-184), into downtown Boise are the backbone to the Treasure Valley’s transportation system. Elmore, Ada, Canyon, and Payette Counties are served by this facility. It is directly tied to the economic vitality of the region. I-84 and I-184 (the Connector) are the primary connections with the region’s major employment, activity and retail centers. These include: Micron, Downtown Boise, the Boise Towne Square Mall, Simplot Industries in Caldwell, the Idaho Center in Nampa, and the Boise Airport. It serves as a vital freight corridor, as the primary connection between the Pacific Northwest and Intermountain West. Current average weekday volumes range from 20,000 north of Canyon County to 120,000 between the Eagle Road and Wye Interchanges. By 2035, the travel demand on this corridor will double.

I-84 is a divided four lane (two east bound lanes, two west bound lanes), full access control, high speed roadway in Elmore, Payette, and limited sections of Canyon and Ada Counties. Once construction is complete, the corridor will have six to eight lanes between the Franklin Boulevard Interchange and the Broadway Avenue Interchange, and all of I-184 (the connector). Access is limited to ten interchanges serving 19.5 miles of interstate in Ada County (from the Canyon County line to Isaacs Canyon Interchange), and eight interchanges serving over thirteen miles in Canyon County (Caldwell to the Ada County line).

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for I-84 and I-184 Corridor to meet CIM goals:

- Maintain and/or rebuild the interstate infrastructure, including the existing interchanges, to accommodate widening. Much of I-84 was constructed almost fifty years ago.
- Continued support for the completion of interchanges between Meridian and Caldwell.
- Continued support for the widening of I-84 from four lanes to eight lanes in the urban areas.
- Support a new interchange at the proposed SH 16 connection to I-84.
- Begin a study on corridor-level operational and capacity improvements such as high occupancy vehicle lanes, ramp metering, expansion/enhancement of bus operations and a fixed guideway transit system.

Recommendations for I-84 and I-184 Corridor Public Transportation:

- I-84 is a current route for intercounty bus service and is heavily used by vanpools from Canyon County and points west into employment centers in Ada County.
- This corridor is a candidate for fixed guideway service (bus rapid) but is more likely to have high-frequency local bus service. The Treasure Valley High Capacity Transit Study considers I-84 a possible candidate.¹
- Park-and-ride facilities should be considered at every current and planned interchange.

Land use decisions needed to implement the plan:

- Local jurisdictions in the region should concentrate future development in designated growth areas.
- Promote a more even jobs/housing balance between Ada and Canyon Counties.
- Preserve land for future interchanges at proposed locations.

¹ This study can be found at http://compassidaho.org/reports.htm under Fiscal Year 2009 Reports.
CHALLENGES AND OPPORTUNITIES

In the urban areas of the region, future interstate expansion opportunities are limited. I-84 will probably not exceed 8-10 lanes due to available right of way and interchange design constraints. Because of these limitations and the increasing congestion, a corridor level alternatives analysis should be conducted. The analysis should examine I-84 operational improvements, such as high occupancy vehicle lanes and ramp metering, as well as improvements to bus operations. The study should evaluate the possibility of a Robinson Road interchange at I-84.

In addition to the need for increased capacity of I-84, the existing infrastructure is in need of renovation. Many current interchanges will not accommodate an eight lane interstate. Thus, maintenance is as essential as is expansion. The Idaho Transportation Department’s “Connecting Idaho Program” approved by the Idaho Legislature in 2005 allows funding of specific roadway projects via a Grant Anticipation Revenue Vehicle (GARVEE). GARVEE funds are bonds issued based on anticipated federal highway funds. I-84 corridor projects in Ada and Canyon Counties have been under construction for several years.

Past and Current Investments through 2015

Pre-2008
- The I-84 Corridor Study was completed in October 2001. Several I-84 projects in the “Connecting Idaho Program” originated from this study. GARVEE funding has accelerated many of the identified reconstruction and widening projects needed along the corridor.

- Other projects: Franklin Road Interchange (Exit 29) reconstructed; Construction of new Karcher Road Interchange, soundwall installed, resurface 5.6 mile segment southeast of Broadway Avenue IC, environmental study from Karcher Road to Five Mile Road overpass, and Eagle Road interchange westbound off-ramp.

2008 to 2011:
- 10th Avenue IC to Franklin Road IC (Exit 29): Construct an auxiliary lane on westbound I-84. $2,425,000
- 11th Avenue Overpass: Replace bridge. $5,199,000
- Franklin Boulevard IC to 11th Avenue Overpass: Widen I-84 to three (3) lanes in each direction. $43,866,000
- 11th Avenue Overpass to Garrity Boulevard IC: Widen I-84 to three (3) lanes in each direction $13,513,000
- Garrity Boulevard IC: Replace mainline bridges with a single bridge. $5,760,000
- Garrity Boulevard IC-Meridian Road IC: Widen to four (4) lanes each direction. Includes reconstruction of Robinson and Black Cat overpasses. $21,800,000
- Ten Mile Road IC: Construct new interchange (open Summer 2011). $68,396,000
- Cole /Overland IC to Orchard Street IC: Resurface one mile of existing lanes on I-84. Widen to four (4) lanes each direction. Includes I-84 bridge over New York Canal. $16,038,000
- Orchard Street IC: Reconstruct interchange. $24,516,000
- Orchard Street IC to Vista Avenue IC: Resurface one and half mile of existing lanes on I-84. Widen to four (4) lanes each direction. $11,833,000
- Vista Avenue IC: Reconstruct interchange. $30,004,000
- Vista Avenue IC to Broadway Avenue IC – Resurface one mile of existing lanes on I-84. Widen to four (4) lanes each direction. $24,666,000

Unfunded Improvements through 2035

| Operational improvements such as high occupancy vehicle (HOV) lanes, ramp metering, and dynamic message signs. Noise reducing structures such as sound walls and berms. Landscaping and lighting. | Exit 29-Garrity IC. Widen to three (3) lanes each direction for remainder of corridor. Includes interchange reconstruction at Broadway Avenue and Gowen Road. Unfunded: $245,077,000 |
| Future SH 16 Interchange: (vicinity of McDermott). Construct new interchange with ramps to connect with Franklin Road. Unfunded: $95,762,000 | Ustick Road Interchange. Construct new interchange. Unfunded: $32,528,000 |

2 Various reports related to I-84 studies and projects under GARVEE can be found at http://itd.idaho.gov/Projects/D3/
Linder Road
Linder Road relieves pressure on Ten Mile Road and Meridian Road.

WHY THIS CORRIDOR MATTERS

The Ada County cities of Eagle, Star, Meridian, and Kuna are expected to grow significantly through 2035 and beyond. Eighteen thousand households are within a mile of the Linder corridor today, compared with a forecasted 41,400 by 2035. Linder Road will serve as a “reliever” for Ten Mile Road and Meridian Road in the future.

Communities in Motion focuses on the seventeen mile section of Linder Road between Beacon Light Road and King Road. Linder Road could carry over 30,000 trips per day on its busiest segment north of Franklin Road in 2035.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Linder Road Corridor to meet CIM goals:

- As an alternative to Ten Mile Road and Meridian Road for many regional travelers, Linder is recommended to be widened to four to five lanes from Beacon Light Road to Kuna Mora Road. However, this corridor is not in the funded category of the plan. Projects within the corridor, notably the Linder Overpass at I 84 may be funded earlier as a traffic operations measure for the Ten Mile interchange and Meridian Road corridors.
- Continued support for the completion of the corridor plan for Linder Road is needed.

Recommendations for Linder Road Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pullouts.
- Both corridors are likely candidates for major fixed-route services given the residential and commercial uses. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the Linder Road corridor is consistent with the standards of the Idaho Transportation Department.
CHALLENGES AND OPPORTUNITIES

Linder Road has an opportunity to become an alternative route for north-south travelers on Ten Mile Road and Meridian Road. The planned expansion of the road from two to three lanes to four to five lanes

A new overpass, although not funded in this plan, would enhance its ability to serve as a “reliever” for the surrounding corridors.

Growth in the North Eagle Foothills will add demand on north-south corridors and improvements to the river crossing, again not funded in this plan, would be critical.

On the south side, Kuna has long desired a rail overpass to connect with development south of the UP track.

Past and Current Investments through 2015

- Linder is one of the longest north-south roads in the region, running from north of Beacon Light to Swan Falls (35.5 miles)
- 2009: Linder Road / Ustick Road Intersection. Project included left and right turn lanes and two through lanes in each direction, install traffic signal, curb, gutter, sidewalk and bike lanes within project limits. Approximate Cost: $4,600,000

Funded Investments through 2035

- Franklin to Chinden – Construct to five lanes. $28,000,000

Unfunded Improvements through 2035

- Widen Linder Road from two lanes to five lanes between Kuna-Mora Road south of Kuna to Ustick Road in Meridian, including a rail crossing in Kuna and a new overpass at I-84. Estimated Cost: $72,876,000
- Widen Linder Road from two lanes to five lanes between Chinden and Beacon Light Road north of Eagle. Estimated Cost: $40,000,000

Portions of it may be implemented based on safety or traffic operations issues. Two key projects within the corridor that may meet these tests are:

- Linder overpass at I-84
- Rail crossing in Kuna
Locust Lane and Lake Hazel Road

Locust Lane and Lake Hazel Road provide a southern alternative to I-84.

WHY THIS CORRIDOR MATTERS

Locust Lane and Lake Hazel Road are located roughly five miles south of the interstate. New residential subdivisions line the road, with pockets of commercial activity at the larger intersections. In Canyon County, Locust Lane runs seven miles through south Nampa and connects to Columbia Road. When an additional road extension is complete, Locust Lane will connect with Lake Hazel Road in Ada County. Lake Hazel Road continues nine miles through unincorporated areas south of Meridian, north of Kuna and extending into south Boise. The need for this corridor is driven in part by development in the area. Nearly 5,000 new residential and commercial lots within a mile of Lake Hazel were approved or are likely to be approved in the future.

Currently, Lake Hazel road ends three-quarters of a mile past Maple Grove Road. Plans call for extending Lake Hazel to connect with Gowen Road. When Gowen Road improvements are complete, Lake Hazel will then connect both with the I-84 Eisenmann Road interchange east of Boise and north up to Orchard Avenue. Travelers will also use the corridor to access McDermott Road, which is planned, but unfunded, as a major north/south commuter expressway with an I-84 interchange. These new planned connections could make the corridor a viable alternative to I-84 for local commuters. Volumes on the completed corridor would range from 13,000 on Locust Lane near 12th Avenue to 45,000 on Lake Hazel east of Five Mile Road.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Greenhurst & Lake Hazel Corridor to meet CIM goals:

- Widen Lake Hazel Road from McDermott Road to Maple Grove Road.
- Complete the Gowen Road realignment connecting Lake Hazel east to the Isaac Canyon Interchange and north to Orchard Street.
- Complete the connection between Locust Lane and Lake Hazel Road.

Recommendations for Greenhurst & Lake Hazel Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- This corridor is a strong candidate for major fixed-route services given the residential and commercial uses and corridor length. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor should focus development in designated growth areas.
- Direct access points along the corridor should be limited.
CHALLENGES AND OPPORTUNITIES

Locust Lane and Lake Hazel Road have already transformed from rural roads into more primary travel routes, but changes to the corridor will become even more pronounced in coming years. Demand for an efficient travel route serving the southern county developments will only increase. Unlike other potential southern Treasure Valley corridors, where planned improvements may take 30 or more years to come to fruition, the Locust Lane and Lake Hazel Road corridor is more likely to see road improvements and increased travel capacity over the next ten years.

Past and Current Investments through 2015

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extending Lake Hazel to the proposed Gowan Road realignment has been planned for nearly ten years to increase connectivity in the southern Ada County region. A study to determine the exact location of the alignment was completed in 2007.</td>
<td></td>
</tr>
</tbody>
</table>

Funded Investments through 2035

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Hazel Road from Locust Grove to Pleasant Valley - construct to 5 lanes.</td>
<td>$45,300,000</td>
</tr>
</tbody>
</table>

Unfunded Improvements through 2035

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvements between Happy Valley and Locust Grove, including a rail overpass.</td>
<td>$90,289,000</td>
</tr>
<tr>
<td>Locust Lane widen from two lanes to five lanes from Middleton Road to Happy Valley Road in Nampa. Estimated Cost:</td>
<td>$26,700,000</td>
</tr>
</tbody>
</table>

1 This study can be found at the Ada County Highway District web site at http://www.achdidaho.org/Projects/ProjectsPast.aspx
WHY THIS CORRIDOR MATTERS

North-south travel has not been a major concern in previous plans due to the east-west travel patterns created by the terrain and the layout of cities in Ada County and Canyon County. But regional growth is changing the pattern of travel. Growth in Gem County, combined with expanding populations and employment in Middleton, Star, Eagle, Meridian, and Kuna, will challenge existing north-south facilities. Given the barriers presented by the foothills, the Boise River, the benches and I-84, north-south corridors are often discontinuous. The investment in Eagle Road (SH 55) during the 1990’s was overwhelmed by the rapid pace of development, and other north-south roads already are bordered by subdivisions. With its connection to the proposed SH-16 extension, McDermott Road will continue this corridor, be preserved as a future expressway, and connect to another future expressway proposed for Kuna-Mora Road. Under the plan, McDermott Road would be constructed as an arterial four-lane facility between I-84 and Lake Hazel Road with a high degree of access control looking toward an eventual expressway standard. By 2035, traffic volumes will range from 14,800 north of Franklin Road to 57,000 on the SH 16 Boise River bridge. South of I-84, volumes would range from 7,000 at Overland Road to nearly 13,000 north of Columbia South of the railroad, volumes drop dramatically in the absence of an I-84 overpass and rail crossing.

The road spans nine and half miles between I-84 (a new interchange is proposed as part of the SH 16 extension but is not funded) and its proposed connection to Kuna-Mora Road. Much of the area is irrigated farmland but 200 residences on smaller parcels within a quarter mile exist; fifty-six percent of those homes lie between I-84 and Victory Road.

The parcels within a quarter mile of McDermott Road contain 5,100 acres. Of this amount, 338 acres are in small holdings of less than five acres on 242 parcels. This is meaningful since smaller parcels will be affected more than larger parcels by an expressway. Most of these smaller parcels cluster at the northern end of the route. While no major streams or rivers are affected, McDermott Road does cross major canals, including the Ridenbaugh, New York, and Mora Canals.

Goals for Communities in Motion (CIM)
Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for McDermott Road Corridor to meet CIM goals:
- McDermott Road from I-84 to Kuna-Mora Road is recommended for preservation as an expressway. It will be connected to Kuna-Mora initially by constructing a rail overpass and widening McDermott Road to four-lanes between I-84 and Lake Hazel Road.
- Alignment studies are needed to evaluate options to connect McDermott Road with Kuna-Mora Road. This study should evaluate a future connection with Kuna-Mora Road as an expressway. Interchange locations and footprints need to be established within two years. Leadership on this study will depend on whether the corridor is to remain under local jurisdiction or to go under ITD jurisdiction.

Recommendations for McDermott Road Corridor Public Transportation:
- The connection to SH 16 and I-84 could mean a major regional transit connection from southern Ada/Canyon north to Gem County. This connection is even more important since McDermott crosses the primary corridors for transit along the Boise Cut-off and State Street.
- While direct access from adjacent development may not be desirable, given the intent to preserve the corridor for high speed travel, the corridor designs should consider possible HOV lanes and incorporation of park-and-ride facilities at interchanges and major intersections.

Land use decisions needed to implement the plan:
- To maintain the right-of-way for future expressway and interchanges, local governments should stipulate a minimum setback of 150 feet from the centerline of McDermott Road. At the intersections of McDermott Road with major roads setbacks should be negotiated to preserve future interchanges.
- Direct connections to McDermott Road should be conditioned as temporary pending establishment of future backage and frontage roads.
CHALLENGES AND OPPORTUNITIES

McDermott Road is a boundary between Ada County and Canyon County for much of its length, so coordinating land use and construction will be a major challenge. The extent of existing development presents difficulties in right-of-way acquisition—a situation that can only become worse without quick identification of alignments and right-of-way needs. Circulation plans, including frontage and backage roads for the adjacent properties, will be difficult as well. Although there are few natural environmental issues, the social impact of a future expressway will be significant.

Regardless of these challenges, the potential for McDermott Road as a high capacity north south route cannot be overlooked. Residential uses along other north-south roads are far greater, and McDermott Road is a boundary between two counties and the boundary between several cities’ areas of impact. Considered with its connections to SH 16 through to Gem County and to Kuna-Mora Road across to I-84, McDermott will be a major regional corridor.

Consider incremental implementation of expressway by building new or widened sections that can be retained in a conversion to a divided highway/expressway.

(Exact alignment and location of interchanges subject to further study.)

Past and Current Investments through 2015

- McDermott Road has not been considered as a major corridor in previous plans, so little evaluation of this corridor has been done.

Funded Investments through 2035

- SH 16/McDermott Road, SH 44 to US 20/26 - construct to 4 lane river crossing. $119,457,000

Unfunded Improvements through 2035

- Study alignments of McDermott Road as future expressway, including interchange locations. Establish future rights-of-way needs and access plan. Coordinate with the SH 16 corridor study from I-84 north. Estimated Cost: $5,600,000
- Widen McDermott Road from two lanes to five lanes between Lake Hazel Road south of Meridian to I-84 in Meridian, including a new railroad overpass at Hubbard, and access management plan to preserve for a future expressway. Estimated Cost: $45,019,000
- Remainder of SH 16/McDermott corridor from Chinden (US 20/26) south to Franklin. Construct limited access highway with interchanges and overpasses at SH-44, US 20/26, Ustick, Franklin and I-84. $195,231,000
WHY THIS CORRIDOR MATTERS

The cities of Meridian and Kuna have limited access to I-84. Eagle Road provides direct access to east Meridian and does not provide direct access to Kuna. Thus, the Meridian Interchange is used as a principal travel route to the high growth residential areas of west Meridian, east Nampa, and Kuna. People use the Meridian Interchange and Meridian Road to access such east-west roads as Amity Road, Franklin Road, and Cherry Lane. The limited crossing of and access to I-84 has aggravated roadway congestion by focusing traffic on a handful of roads. Weekday demand on this corridor now ranges from 12,900 near the City of Kuna to 41,000 north of I-84, dropping to 16,000 north of Cherry Lane. In 2035, volumes will range from 41,000 north of Deer Flat Road to 58,000 south of I-84 to 37,000 north of Cherry Lane.

For this plan, the Meridian Road corridor includes State Highway 69 from Kuna north to the Meridian Interchange, Meridian Road from the Meridian Interchange north to US 20/26, and portions of Main Street in Meridian being considered as part of a one-way couplet with Meridian Road. Overall, the road runs twelve miles; it changes from a high-speed, five-lane highway to a two-lane, twenty-five mile per hour arterial with driveway access and on street parking.

The corridor provides access to residential developments, and also serves as the primary interstate access point for commercial and industrial developments. It cuts through Meridian’s city center, which is becoming a destination for employment, shopping, and entertainment. The Meridian Road interchange is critical to I-84 improvements under the GARVEE (Grant Anticipation Revenue Vehicle) since a fourth lane cannot be implemented until the Meridian overpass is reconstructed to provide additional space.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Meridian Road Corridor to meet CIM goals:

- A new interchange at Ten Mile Road will provide additional interstate access to Meridian and Kuna, reducing the demand on the Meridian Road corridor from through traffic.
- Provide support for the implementation of the Downtown Meridian Transportation Management Plan.

Recommendations for Meridian Road Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- This corridor is a likely candidate for major fixed-route services given the residential and commercial uses. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments are recommended to focus development in designated growth areas along the corridor.
- To accommodate future safety and mobility, land use and transportation decisions need to work in concert to restrict access point to SH 69. Multi-agency agreements on access spacing, and the supporting local road system should be pursued.
- Additional access along the proposed one-way couplet portion of the corridor should be limited and/or reduced if possible.
CHALLENGES AND OPPORTUNITIES

As more people move to Meridian and Kuna, the pressure to grant additional access to serve development along the corridor will increase. Access to the road, however, must be limited to ensure better traffic flow and accommodate future needs. Travel demand along the road between the northern and southern portions of Meridian was be lightened due to the Locust Grove Road overpass, and the Ten Mile Road interchange (under construction at the time of this report) will provide additional relief. A Linder Road overpass would also contribute to reducing demand on the highly congested Meridian Road overpass. These added improvements will make the area more connected.

The improvements proposed in the Downtown Meridian Transportation Management Plan have the opportunity to move more traffic through the area with the intention of reducing delay. Phase 1 was completed in 2009 and Phase 2 is budgeted for work in the next few years.

The current ITD access policy for SH 69 limits access spacing to a half mile in the urban areas and one mile in the rural area. By ordinance, the City of Kuna has limited access to the mile and the City of Meridian has limited access to half mile spacing. As the urban areas of the Cities of Kuna and Meridian expand, the spacing becomes an issue. Half mile signalization will reduce travel speeds. Effective signal synchronization may compensate, in part, for travel time. One mile signalization spacing can maintain current speeds on SH 69, but will increase demand on those signals, and requires an integrated transportation system and land use planning prior to urban expansion.

Past and Current Investments through 2015

- **Meridian Road** south of I-84, where it becomes State Highway 69, was widened to 5 lanes to Amity Road in 1996 and to Kuna in 2001. This helped connect Kuna, Meridian, and I-84.
- In 2004, the City of Meridian, in conjunction with the Ada County Highway District completed the Downtown Meridian Transportation Management Plan. Phase 1 was completed in 2009.
- 2013. Meridian Road and Main Street, Franklin Road to Cherry/Fairview Avenue – Phase 2 of the split corridor. Construct the northern portion (north of Franklin Road) of the Split Corridor roadway project. Includes a cross-over portion between Main Street and Meridian Road. Meridian Road, two-way segment – five (5) lanes, one-way segment – three (3) lanes, main Street, one-way segment – three (3) lanes. $11,757,000

Funded Investments through 2035

- **Meridian Road: Waltman Drive - Ustick Road.** Complete corridor improvements to 5 lanes. Includes partial couplet involving Main Street and Meridian Road. $16,524,000

Unfunded Improvements through 2035

- **Meridian Interchange.** Reconstruct and widen. $35,000,000
- **SH 69 Connection: Kuna Mora Road-Kuna Road.** Build new road parallel to the UP rail (north side) to connect SH 69 to Kuna Mora. Broaden to include potential of a rail crossing option to Kuna Mora. $22,509,000
- Operational improvements along the corridor (such as dynamic signalization, closed circuit cameras)
- The addition of signalized crosswalks to safely connect residential areas, schools and downtown Meridian.
- Extension of several local roadways to provide more connectivity to the corridor (extension of Pine Street, Broadway Avenue, and Third Street).
Middleton Road

Middleton Road offers the only crossing of the Boise River for ten miles.

WHY THIS CORRIDOR MATTERS

Middleton Road is an important north-south arterial road that links the City of Middleton to the City of Nampa. The road is a regionally significant road since it is the only road to cross the Boise River east of I-84 in Canyon County and as it continues south to Nampa it crosses I-84. It is the only principal arterial in the fast-growing west Nampa area. Traffic levels on the corridor could reach levels of 23,000 south of the City of Middleton and over 30,000 north of the Caldwell-Nampa Boulevard.

At its northern limit, the corridor serves an important role in linking downtown Middleton to a newly developed commercial area to the south. The City of Middleton may reroute the road to the east of the existing downtown area. Further south, the road bisects the City of Caldwell area of impact. While traditionally a rural area, Caldwell is updating its comprehensive plan to designate future land uses and plans for urban services.

In the Nampa area, Middleton Road is designated a principal arterial as it handles north-south traffic to and from the Karcher interchange area, which is designated a specific plan area in the Nampa Comprehensive Plan and the site of intensive commercial activity. The road is two lanes south toward Greenhurst Road. In 2004, the City of Nampa undertook a study of a potential new road alignment to connect the southern terminus of Middleton Road to State Highway 45 (12th Avenue). That study concluded in early 2006 with a preferred alignment that would widen Greenhurst Road, Midland Road, and Locust Lane with a series of roundabouts at major intersections.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Middleton Road Corridor to meet CIM goals:

- Preserve sufficient width along the corridor to provide long-term ability to accommodate increasing volumes of traffic and future transit services throughout this rapidly urbanizing area of Canyon County.

Recommendations for Middleton Road Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- The cities of Middleton, Caldwell, and Nampa, the Nampa and Canyon Highway Districts, and Canyon County need to protect the ability to widen Middleton Road in the future.
CHALLENGES AND OPPORTUNITIES

The ability of the corridor to serve increasing volumes of traffic and accommodate transit services is threatened if the local jurisdictions in Canyon County do not preserve a sufficient corridor width.

Opportunities that currently exist to plan and protect the corridor include the Middleton Area Transportation Plan and the update to the Caldwell Comprehensive Plan.

Additional funding for transportation needs are required before the cost of widening Middleton Road to five lanes can be programmed and constructed.

A new river crossing between Middleton and Star Roads should be planned before development blocks the most desirable locations.

Past and Current Investments through 2015

A corridor study between Greenhurst Road and State Highway 45 was completed in early 2006. See the Middleton Road Connection Corridor Plan on the website.

For many years, Middleton Road was promoted as the site for a new interchange. The I-84 Corridor Study Final Report concluded that this interchange would be needed after 2020.

Funded Investments through 2035

No funded investments.

Preliminary Development: Reconstruct Middleton Road and SH 55 intersection. Approximate Cost: $2,177,000

Unfunded Improvements through 2035

Expand transit service and provide for necessary transit infrastructure, such as bus pull-outs and shelters.

Middleton Road: Greenhurst Road-SH 44. Widen from 2 lanes to 5 lanes.$83,532,000
Purple Sage/Beacon Light Road

The Purple Sage and Beacon Light Roads will provide relief for SH 44 and are important for future regional connections.

WHY THIS CORRIDOR MATTERS

The small cities in northern Ada and Canyon Counties (Eagle, Star, and Middleton) expect tremendous growth through 2035 and beyond. The build-out of this northern area could add as many 100,000 people or more than today! This much growth will cause pressure on the existing SH 44 corridor. The Purple Sage/Beacon Light corridor will provide a “reliever” to SH 44 in the future. In 2035, the SH 44 corridor is forecasted to carry over 37,000 vehicle trips per day west of Can-Ada Road. Purple Sage Road, even without a direct connection to Beacon Light, could have up to 11,000 trips per day and over 21,000 on Beacon Light Road east of Linder Road.

Proposed improvements include widening Beacon Light Road from SH 55 to SH 16 to four or five lanes, and an unfunded extension to connect Beacon Light and Purple Sage Roads. Purple Sage Road, from the new connection to I-84, is proposed to be widened to three lanes.

The corridor extends twenty miles including a two-mile gap, from I-84 to SH 55, and is rural in nature. The most heavily developed section of roadway is in the City of Eagle from SH 55 to Linder Road. The development along this section includes large-lot subdivisions and ranchettes. The corridor currently does not intersect any of the cities, but in the future could become a boundary or even an internal arterial in all of the northern cities.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Purple Sage Road / Beacon Light Road Corridor to meet CIM goals:

- Beacon Light Road is recommended for expansion to four or five lanes. An extension of Beacon Light Road to Purple Sage Road is also recommended. Widening Purple Sage Road from I-84 to the new connection will help provide relief to SH 44.

Recommendations for Purple Sage Road / Beacon Light Road Corridor Public Transportation:

- While not a major transit corridor, provision should be made for park-and-rides.
- Improving pedestrian and bicycle facilities should be considered in future designs.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the Purple Sage/Beacon Light corridor is managed to maintain its function as a regional arterial.
CHALLENGES AND OPPORTUNITIES

Rapid population growth along the corridor will increase pressure on SH 44. The Purple Sage Road/Beacon Light Road corridor has an opportunity to evolve as an alternate route for drivers on SH 44 and is the most northern road before the foothills. The planned extension and widening of Beacon Light Road/Purple Sage Road will improve connectivity within the region. Recent annexations and platting activity north of the City of Star already challenge the possibility of the extension between Purple Sage Road and Beacon Light Road. Goodson Road, two miles north, is another opportunity for providing east-west capacity, although it has no connecting roadway east of SH 16.

Past and Current Investments through 2015

This is the first plan proposing a connection between Purple Sage Road and Beacon Light Road and the widening of Beacon Light Road.

In 2008, the Ada County Highway District approved an alignment study regarding a connection between Beacon Light and Purple Sage Roads. ¹

Funded Investments through 2035

None

Unfunded Improvements through 2035

Beacon Light Road Extension: Purple Sage Road-SH 16. Construct new 2 lane road.$4,033,000

Beacon Light Road: SH 16-SH 55. Widen from 2 lanes to 5 lanes.$48,701,000

¹ The Purple Sage/Beacon Light Alignment Study can be found at http://www.achdidaho.org/Projects/ProjectsPast.aspx
Rail Corridor

The Rail Corridor is vital to the region because of its potential for transit.

WHY THIS CORRIDOR MATTERS

Much of the rail corridor, specifically the “Boise Cutoff,” parallels I-84, which is the backbone of the Treasure Valley’s transportation system. The 44-mile long Boise-Cutoff and I-84 can be broadly considered to be the same corridor because of this relationship. The rail corridor includes connections from Caldwell to south of Boise and has the potential to provide effective transit alternatives to the primary east-west roadways through the provision of rail or bus rapid transit service.

A 2003 study examined the corridor in order to provide information and background on the history, ownership, current freight activities, improvements and investments necessary to implement passenger service. The study focused on the portion of the rail corridor beginning in Nampa, through Meridian to just south of Gowen Road in Boise, approximately twenty-five miles. The study also identified several potential routes to connect to Caldwell.

The study identified seven potential station locations; Nampa at 11th Avenue, Idaho Center, Meridian, Eagle Road, Boise Towne Square Mall, Boise Depot, and East Terminal. In addition, the City of Meridian’s comprehensive plan shows a rail station at Ten Mile Road.

The Boise Cutoff was used for freight and passenger rail service starting in 1926. Passenger service by AMTRAK was halted in 1997. Note that the Boise Interurban offered local streetcar services between Boise, Meridian, Nampa, Caldwell and other communities from 1890 until 1928, when increasing automobile use cut ridership and revenues.

The Union Pacific Railroad (UPRR) currently owns the line with freight service being provided by Watco Industries dba Boise Valley Railroad under a track rights agreement with UPRR.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for the Rail Corridor to meet CIM goals:

- Support an I-84 corridor-level alternatives analysis that would include fixed-guideway service along the rail line.
- Support legislation allowing local funding of transit service.

Recommendations for the Rail Corridor Public Transportation:

- This corridor is a candidate for fixed-guideway service (bus rapid, commuter rail or light rail under the The Treasure Valley High Capacity Transit Study.
- Development and corridor design should allow for direct access to station locations.
- Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- Any land-use decisions up to one mile around potential station areas should be coordinated with Valley Regional Transit to ensure compatibility and support for existing and future transit service.
- Development outside potential station areas and existing urban areas should be limited.
- Right-of-way in station areas should be preserved for future development.
- Local governments along the corridor are recommended to focus development in designated growth areas, particularly around potential transit stations.
CHALLENGES AND OPPORTUNITIES

I-84, the Treasure Valley transportation backbone, is facing a doubling of traffic levels in the next twenty-five years and a travel time increase of approximately forty percent from Caldwell to Boise’s Central Business District. By 2035, travel time is expected to jump 150%. Under very high growth beyond 2035, travel times on I-84 could fall to 15 mph or lower. The rail corridor presents a unique opportunity to provide relief to this vital corridor through the provision of fixed-guideway transit service.

The primary source of funding to implement a fixed-guideway system is the Federal Transit Administration. If proposed projects score well the federal government may pay a substantial portion of the initial capital investment necessary to initiate service. The study and subsequent design and construction process typically takes from six to twelve years and seeks to ensure solid planning/decision-making, adequate project scrutiny, local support, sufficient cost-benefit analysis and documented transportation needs.

The challenge will be that in order for any project to score well and receive New Starts funding, jurisdictions must be committed to improving project scoring through actions at the local and regional level. Project scoring criteria includes:

- Local Financial Commitment: How much local money is available for construction, operations and maintenance? Will it be available for the next twenty years?
- Land Use: Does land use around stations support transit? If not, are plans, ordinances, and design guides in place to make it so?
- Growth Management: Do policies direct development to established urban centers and/or to limit development elsewhere?
- Economic Development: Will station areas spur economic development?
- Environmental Benefits: How will the project improve air quality?
- Cost Effectiveness: What is the cost per rider?

Recommendations regarding the rail corridor can be viewed at http://www.compassidaho.org/prodserv/specialprojects-tvhcts.htm

Past and Current Investments through 2015

In 1997, a diesel-powered light rail vehicle, the RegioSprinter, was demonstrated during two weeks along the Boise Cutoff.

Circa 1999, the Union Pacific Railroad sold eighteen miles of the Boise Cutoff south of Boise to the City of Boise.

In 2003, a Rail Corridor Evaluation identified intersection improvements, rail upgrades and infrastructure investments that would be necessary at such a time passenger service was implemented along the corridor.

In 2009, a High Priority Corridor Study was completed under the Treasure Valley High Capacity Transit Study.

Funded Investments through 2035

Without additional revenues, the fixed-guideway services and its supporting bus system are not fundable and are deemed illustrative.

Unfunded Improvements through 2035

Conduct an Alternatives Analysis Study to qualify the corridor for federal funding consideration. $3.3 million.

Acquire the rail corridor from the Main Line in Nampa to downtown Boise. Reconstruct, including rail and safety improvements. Implement rail or bus rapid transit services along the corridor. Estimated Capital Cost: $300 - $900 million.

1 Recommendations regarding the rail corridor can be viewed at http://www.compassidaho.org/prodserv/specialprojects-tvhcts.htm
Robinson/Star Road

Robinson/Star Road is an arterial that will become more important as an alternate to McDermott Road – a potential extension of SH 16.

WHY THIS CORRIDOR MATTERS

The Robinson Road/Star Road corridor currently carries a significant amount of traffic between its termini at Floating Feather Road and northwest of Melba (Owyhee County). The focus, for the purposes of this plan, is the twenty mile segment beginning at Star Road at SH 44 and terminating south of Kuna Road. In 2035, the corridor is forecasted to carry 24,000 trips per day south of I-84, decreasing to less than 6,000 north of Bowmont Road. The Star Road bridge across the Boise River would be 28,000 trips per day with the addition of the SH 16 River Crossing.

Expanding the road to four or five lanes from Greenhurst Road north to Cherry Lane would increase the number of vehicles it carries. An interchange previously planned for Robinson Road would occur one mile east at McDermott Road. (See the SH 16 and McDermott Corridors) The new McDermott Road interchange and corridor would decrease demand on the Robinson Road/Star Road corridor, which would then provide a more local route for north/south travel.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Robinson Road/Star Road Corridor to meet CIM goals:

- The road is recommended but not yet funded to become a four- or five-lane arterial from Greenhurst Road north to Cherry Lane, with design treatments determined by collaborative planning by the City of Nampa, Nampa Highway District, and the Idaho Transportation Department (I-84 vicinity). The Union Pacific Railroad would also be involved due to the rail crossing issues.
- Continued support for the completion of the corridor plan for Robinson Road/Star Road is needed.

Recommendations for Robinson Road/Star Road Corridor Public Transportation:

- This corridor is a likely candidate for major fixed-route services given the residential and commercial uses.
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the Robinson Road/Star Road corridor is managed consistent with its arterial designation.
Regional Connection

CHALLENGES AND OPPORTUNITIES

Robinson Road/Star Road has an opportunity to provide local north-south travel needs parallel to the McDermott Road corridor, which would be the more regional corridor. It would also provide relief to the Happy Valley Road/Can Ada Road corridor. The planned expansion of the corridor to a four- or five-lane arterial from Greenhurst Road north to Cherry Lane will help alleviate future congestion in a rapidly growing area. An interchange is currently planned for construction on McDermott Road. This will leave Robinson Road/Star Road as the only major corridor separating the Garrity and McDermott interchanges.

Additional pressure on Robinson Road and Star Road is due to the Star bridge across the Boise River, the College of Western Idaho, the Idaho Center and large commercial development near the Garrity Interchange.

Past and Current Investments through 2015

<table>
<thead>
<tr>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>The I-84 Corridor Study Final Report completed in 2001 evaluated an interchange at Robinson Road to remove some pressure from the already congested Garrity Interchange. 2010: Reconstruct of two lane overpass to accommodate additional lanes on I-84. An interchange at McDermott Road is designed to provide access from Franklin to a future I-84 interchange and to the extension of SH 16 from SH 44 to I-84. This interchange would reduce the need for a Robinson Road interchange.</td>
<td>None.</td>
</tr>
</tbody>
</table>

1 I-85 Corridor Study Final Report URL: http://www.compassidaho.org/documents/planning/studies/i84finalreport.pdf
2 A report on the SH 16 planning, including the new interchange, can be found at http://itd.idaho.gov/projects/D3/
State Highway 16

State Highway 16 is the primary north-south route that links Gem County to the Treasure Valley.

WHY THIS CORRIDOR MATTERS

State Highway 16 (SH 16) is the main commuter route from Gem County to the Treasure Valley. According to the 2000 Census approximately 37% of the Gem County labor force travels to the Treasure Valley for work. The SH 16 corridor has been included in the “Connecting Idaho Program” that was launched by the Idaho Transportation Department and approved by the Idaho Legislature in 2005. The corridor is an important link from Gem County to the north and south of I-84.

From the Gem County/Ada County border south to Beacon Light Road, the corridor traverses rural areas of northern Ada County. Development in this area has historically been limited due to steep terrain and lack of an interconnected road network and urban services, although development pressure from recently proposed planned communities could quickly affect demand. From Beacon Light Road south to SH 44, the area is experiencing rapid development pressures as the cities of Star and Eagle expand. One major development north of Eagle alone could add 6,000 or more homes plus a significant amount of commercial space.

The Idaho Transportation Department funded a major study of the extension of the highway south to I-84 and amended earlier study from SH 44 to the City of Emmett. This study will meet National Environmental Policy Act (NEPA) requirements and determine the ultimate highway alignment and roadway section. The extension will be located about ¼ mile west McDermott Road. If the expressway was constructed 2035, traffic volumes would range between 31,000 and 91,000 along the corridor. This is equivalent to current traffic on I-184 near the Emerald Street Overpass.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for State Highway 16 Corridor to meet CIM goals:

- Implement the SH 16 Corridor Study to improve safety and mobility along the corridor.
- Design and construct a high-speed, limited access roadway connecting existing SH 16 to I-84 at or near McDermott Road.

Recommendations for State Highway 16 Corridor Public Transportation:

- Park-and-ride facilities should be considered.
- This corridor is a likely candidate for major fixed-route services given the regional nature and its proximity to the rail corridor.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the SH 16 corridor is consistent with the standards of the Idaho Transportation Department.
- The Idaho Transportation Department and local jurisdictions need to work together to implement the recommendations of the SH 16 Corridor Plan.
- Specific area plans should be completed and adopted in advance of urban development in the vicinity of interchanges.
CHALLENGES AND OPPORTUNITIES

The Idaho Transportation Department is designing SH 16 to an expressway/freeway standard. This opportunity exists due to the relatively low amount of development along the corridor. Local governments and ITD have considered the location of new interchange locations along the highway.

Safety along the existing corridor has been a concern for the past several years due to rapidly increasing traffic volumes and the number of accidents. ITD and local citizens and elected officials have met regularly to identify improvements to the corridor, and ITD has designated the corridor as Idaho’s first “safety corridor.”

The type of facility represented by the SH 16 corridor could be continued south along the McDermott corridor to connect with the Kuna-Mora corridor. The combination of these three corridors would provide the first major new regional route since the construction of I-84. (See McDermott and Bowmont/Kuna-Mora corridor descriptions.)

SH 16 will cross the Boise Cut-off rail line, which is a candidate for fixed guideway (rail or bus rapid transit) services. Provision for access to a future transit station would include opportunities for park-and-ride and facilitation of bus access between SH 16 and the station.

(See attached map showing the preferred alternative alignment and cross section.)

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Idaho Transportation Department initiated a study of SH 16 in 2001. ITD amended the study to have an expressway concept included. In 2009, ITD completed the Environmental Impact Statement for the SH 16 extension between SH 44 and I-84. It selected a "preferred alternative" that would connect with I-84 approximately ⅛ mile west of the McDermott Road alignment. As of May 2010, over $25 million has been spent on preparing the EIS document, design and right-of-way purchases under the GARVEE program.</td>
<td>SH 44 to US 20/26 - construct to 4 lanes with river crossing. $119,457,000</td>
<td>Design and build park and ride lots. Evaluate the extension of this corridor south to Kuna-Mora Road. I-84 to Chinden and Ada County to Gem Counties Line. Build to Expressway standards including interchanges at Ustick Road, US 20/26, SH 44, Beacon Light, and Chaparral, overpasses at the other roads intersected. $195,231,000 Widen SH 16 from three lanes to 4/5 lane from the County line to SH 52. Estimated Cost: $94,000,000 New interchange at I-84 with connections to Franklin Road. Estimated Cost: $74,000,000</td>
</tr>
</tbody>
</table>

Draft Idaho 16 I-84 to Idaho 44 Environmental Study
Alternatives Development, p. 3-41

Preferred Alternative

Idaho 16 Preferred Alternative Plan View

EXHIBIT ES-1
Preferred Alternative (2D Modified)
Idaho 16 I-84 to Idaho 44 Environmental Study
Project No. A005953, Hwy No. 39963
This page intentionally blank.
State Highway 21

SH 21 provides connections for Boise County.

WHY THIS CORRIDOR MATTERS

SH 21 runs from the City of Boise to SH 75 in Stanley, Idaho traversing through rugged terrain in the “back country” of central Idaho. SH 21 is one of the most important north-south corridors in Boise County. It provides access for Boise County residents to the jobs and services in Ada and Canyon Counties, but also provides access for tourists throughout the year into Boise County and beyond and for Ada and Canyon Counties’ residents to weekend at summertime cabins. State Highway 21 is also major freight routes, including logging trucks.

The two highways are connected via Garden Valley on a county road. The indirectness of this route has been a concern to Boise County residents and is addressed in a separate corridor write-up, Harris Creek/Centerville Road.

According to the 2000 Census, fifty-two percent of workers living in Boise County commute to Ada County during the week. The peak traffic may be driven more by the weekend travel and recreational trips, however. The ITD traffic report for July 2005 indicated average weekend traffic measured at Robie Creek was 4,188, compared to the average weekday traffic of 3,670 at that location. Average daily traffic in July 2009 was 3,664, down from 4,126 in 2001. COMPASS does not forecast volumes at this location, but the forecasted volume at the Boise River bridge near Warm Springs in 2035 is 15,000 trips per day.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for SH 21 Corridor to meet CIM goals:

- The proposed improvements provide safety on existing highway.
- Support from the Idaho Transportation Department, Idaho City and Boise County is needed.

Recommendations for SH 21 Corridor Public Transportation:

- Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- Corridor planning along SH 55 and SH 21 will enhance traffic flow and safety. Access management is essential.
Regional Connection

CHALLENGES AND OPPORTUNITIES

SH 21 – This highway runs through the mountains with a tremendous amount of sharp curves. The proposed projects for the highway include additional passing lanes between the City of Boise and Idaho City to improve safety conditions.

There are distinct urban and rural portions of SH 21. West of the Boise River, right of way was purchased to accommodate a future widening. Access rights were also purchased or negotiated at that time. The route was designed for a future bridge to be constructed north of the existing bridge. No funds to widen and/or construct the new bridge are in the fiscally constrained plan.

Also see Harris Creek/Centerville Road Corridor.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Improvements to SH 21 involve safety and geometric improvements rather than adding lanes of travel. Accident data and traffic studies will be needed to identify needs such as passing lanes, guard rails, improved lighting at intersections, and horizontal and vertical curve improvements.</td>
<td>No projects are recommended at this time.</td>
</tr>
</tbody>
</table>
WHY THIS CORRIDOR MATTERS

State Highway 44 (SH 44), also known as State Street, is the only east-west highway that links Canyon County to Ada County north of the Boise River. State Street is under ITD jurisdiction as SH 44 from Glenwood to I-84. SH 44 continues south on Glenwood to Chinden Boulevard. From Glenwood east to downtown Boise, State Street is under ACHD jurisdiction. State Street carries high levels of commuter traffic from Middleton and western Ada County, as well as commuters from Gem County via SH 16. Existing travel volumes range from 11,500 average daily traffic at the western terminus with I-84 in Canyon County, to 14,500 in the Star vicinity to 41,000 just west of Glenwood.

The corridor varies in character from the rural western edge to downtown Boise. Main areas include downtown Middleton, downtown Star, and the urban corridor from Eagle Road to downtown Boise. The City of Middleton comprehensive plan and the SH 44 Corridor Study have included an alignment for a bypass of downtown Middleton. A bypass of the City of Star was reviewed in the SH 44 Corridor Study but no options now exist for such a bypass. Further east, local and state agencies have been working on a plan to incorporate bus rapid transit into the State Street/SH 44 corridor.

Until additional river crossings can be identified and constructed, such as the Three Cities River Crossing, this highway will need to carry an ever increasing volume of traffic. Future volumes are forecasted to increase to 29,000 west of Middleton to 68,000 near Veterans Parkway by the year 2035.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for State Highway 44 (SH 44) Corridor to meet CIM goals:

- From Eagle Road west to I-84, the corridor is recommended to be a four-lane, limited access arterial with design treatments determined by collaborative planning among Idaho Transportation Department, local highway districts, and local jurisdictions.
- Continued support for the completion of the corridor plan for SH 44 is needed.

Recommendations for State Highway 44 (SH 44) Corridor Public Transportation:

- This corridor is a candidate for bus rapid transit along with high-frequency local bus service.
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Park-and-ride facilities should be considered at key locations.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas, especially those associated with BRT stations.
- Land-use decisions need to ensure access to the SH 44 corridor is consistent with the standards of the Idaho Transportation Department.
CHALLENGES AND OPPORTUNITIES

This corridor is rapidly being developed as the cities of Eagle, Star, and Middleton grow. The cost of right-of-way along the corridor increased dramatically during the past decade. The cities of Eagle and Middleton have recognized in their comprehensive plans the importance of maintaining traffic flow throughout the corridor. Eagle has adopted a system of parallel collector roadways that are being built by developers as the city grows. Middleton has adopted an alignment of a proposed alternate route. This action attempts to protect a viable alternate route south of the City of Middleton from development. The SH 44 Corridor Study found broad support for preserving the arterial function of the roadway enhanced with more investment in public transportation services to serve the urban population in the corridor. Changes in land use will be needed to focus growth near transit and to improve land use and transportation designs to foster transit, walking and biking. One challenge to maintaining traffic flow through the corridor is the section of the roadway through downtown Star.

Past and Current Investments through 2015

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widen State Street between downtown Boise (starting at proposed Multi-Modal Center) to Eagle Road (SH 55) to accommodate a dedicated lane for transit. Improve State Street from Glenwood to 36th St.</td>
</tr>
</tbody>
</table>

Funded Investments through 2035

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a bus rapid transit system between downtown Boise and Eagle Road and transit stations at activity centers along the corridor.</td>
</tr>
<tr>
<td>Widen State Street between downtown Boise (starting at proposed Multi-Modal Center) to Eagle Road (SH 55) to accommodate a dedicated lane for transit. Remaining portion of SH 44 from SH 55 to Glenwood.</td>
</tr>
<tr>
<td>SH 44: I-84-Ballantyne Road. Widen from 2 lanes to 4 lane limited access highway. Includes a new alternate route around Middleton.</td>
</tr>
</tbody>
</table>

Unfunded Improvements through 2035

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

1 Information on the State Street Corridor Transit Study can be found at http://www.valleyregionaltransit.org/PROJECTSSTUDIES/STATESTREETCORRIDORSTUDY/tabid/174/Default.aspx
State Highway 45 connects the region to Owyhee County.

WHY THIS CORRIDOR MATTERS

State Highway 45 (SH 45) connects the City of Nampa and Owyhee County. It serves, however, as an important connection to SH 78, which merges with US 95 into Oregon and SH 51 into Nevada.

SH 45 traverses through a rural portion of the region and fills the need for a variety of travel needs. A local landfill is located just off of SH 45, and waste truck trips from the urban areas to the landfill are numerous. Farm trucks carrying sugar beets and other agricultural products travel from the southern portions of Canyon County to the processing factory north of Nampa. The cheese factory also generates many truck trips taking waste products from the factory to a dump site in the southern area of the region.

The corridor also serves as a commuter route from Owyhee County and the City of Melba to the urban areas of the region. Recreational traffic to the Snake River, Celebration Park, and other sites accounts for many trips, especially in the summer months.

The road is five lanes from downtown Nampa to Greenhurst Road. This portion of the corridor is the most congested part, as it runs through an area of high retail and office space through the City of Nampa. This section of the road is better known as 12th Avenue. South of Greenhurst Road, SH 45 merges to a three-lane facility, then to two lanes just north of Locust Lane.

Goals for Communities in Motion (CIM)

- Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
- Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
- Environment: Minimize transportation impacts to people, cultural resources, and the environment.
- Information: Coordinate data gathering and dispense better information.

Recommendations for SH 45 Corridor to meet CIM goals:

- As a corridor providing access to southern Canyon County and across the Snake River into Owyhee County, SH 45 provides regional connections. Additional capacity is needed in the urban portion of the corridor south of Nampa to Locust.

Recommendations for SH 45 Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.

Land use decisions needed to implement the plan:

- Land-use decisions need to ensure access to the SH 45 corridor is consistent with the standards of the Idaho Transportation Department.
- Land-use decisions also need to take into consideration the plan for a limited access divided highway along the urban section of the corridor and preserve the right-of-way needed for future improvements.
CHALLENGES AND OPPORTUNITIES

Proposed improvements to the SH 16/McDermott Road corridor and Bowmont/Kuna-Mora Roads provide future opportunities for additional high-speed travel throughout the region. SH 45 will tie in with these future improvements, making it a critical link in the provision of alternatives to the highly congested I-84 corridor.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>In FY 2006 and 2007, pavement preservation projects were scheduled on SH 45 between Roosevelt Road and Deer Flat Road. Estimated cost $2.2 million. A corridor plan on SH 45 from Nampa to SH 78 is scheduled for FY 2015. Total cost of the plan = $235,000.</td>
<td>No projects are recommended at this time.</td>
<td>Widen SH 45 from two lanes to four lanes between Deer Flat Road to Locust Lane south of Nampa as a limited access divided highway. Estimated cost: $13,792,000.</td>
</tr>
</tbody>
</table>
State Highway 55 (Eagle Road)
Three Cities River Crossing

State Highway 55 is vital to the region as a major inter/intra-county connector.

WHY THIS CORRIDOR MATTERS

State Highway 55 (SH 55) connects communities throughout Ada and Canyon Counties and is the primary route for people commuting to and from Boise County and weekend resort destinations in Boise and Valley Counties or further north. The Ada County section of the corridor leaves I-84 north along Eagle Road, goes east along SH 44 (State Street), and then turns north to continue into Boise County. Traffic pressures on the corridor are caused from a lack of other major north-south corridors in the area. The corridor changes as it passes through a diversity of areas.

Travel on SH 55 is tied to The Three Cities River Crossing project (3CRX), planned as a new road and bridge to cross the Boise River and connect the intersection of SH 55 and SH 44 (State Street) on the north with US 20/26 (Chinden Boulevard) on the south. Eagle Road in Ada County is a primary thoroughfare lined with commercial and residential development. The Eagle Road and Fairview Avenue intersection is the highest volume intersection in the Treasure Valley (over 6,300 vehicles in the peak hour). Current volumes range from 53,000 north of I-84 to 40,000 south of SH 44. By 2035, volumes are forecasted at 67,000 south of SH 44. Traffic could go higher, but the capacity of this corridor has already been overwhelmed.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for State Highway 55 Corridor to meet CIM goals:

- Complete Three Cities River Crossing to relieve congestion on surrounding roadways.
- Complete the improvements recommended in the Eagle Road Improvement Project, including new traffic signals, increased traffic signal coordination, intersection improvements, median barriers, and pedestrian and bicycle pathways (where desirable) separated from the roadway with landscaping.

Recommendations for State Highway 55 Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Park-and-ride facilities should be considered.
- This corridor is a likely candidate for major fixed-route services given the residential and commercial uses.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Jurisdictions need to work collaboratively in making decisions about proposed new developments along the north Ada County section of the corridor.
- Land-use decisions need to ensure access to the SH 55 corridor is consistent with the standards of the Idaho Transportation Department.

1 Three Cities River Crossing, ACHD Project Website [http://www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=29]
CHALLENGES AND OPPORTUNITIES

As a primary transportation corridor that crosses several cities and counties, State Highway 55 will carry larger volumes of traffic. As the region’s population continues to grow, conflicts will continue to arise between the traffic generated by commuters wanting to efficiently travel long distances and local traffic traveling between nearby homes and businesses. Growth in Boise County and in the resort towns further north will place additional traffic pressure on SH 55 in northern Ada County. Cities will be challenged to anticipate and plan for the cumulative effects of proposed developments along the corridor, but outside of city impact areas.

Challenges, however, also create the opportunities. The corridor has the potential to be both an effective thoroughfare and to provide access to residential and commercial developments surrounding it.

Determining how best to resolve the immediate challenges to SH 55 could provide a case study for how to conduct effective land use and transportation planning across multiple jurisdictions. The future of this corridor needs to be considered in concert with proposed improvements to SH 16 and McDermott Road. With the extensive development and access issues on SH 55, particularly between SH 44 and I-84, speeds are likely to drop even more. ITD has approved a plan to drop the posted speeds on this portion of SH 55 and to construct medians that would control left-turn movements across the roadway. (See below for Eagle Road Improvement Project.) While these system management improvements will help, travel demand will affect parallel roadways such as Cloverdale and Locust Grove Road.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s: work started to “relocate” portions of SH 55 from previous alignments. The portion through downtown Meridian was moved to Eagle Road. A new interchange was constructed at Eagle Road and I-84.</td>
<td>No major improvements are funded.</td>
<td>Widen SH 55 from two lanes to four lanes as a divided highway between Beacon Light and Brookside north of Eagle. Estimated Cost: $1,822,000</td>
</tr>
<tr>
<td>1990s: A new road was constructed parallel to Horseshoe Bend north of SH 44. Eagle Road was widened in the late 2000s.</td>
<td>Operational improvements, including signal timing and turn lanes, may be funded as identified.</td>
<td>Provide for necessary transit infrastructure, such as bus pull-outs and shelters, along the urban areas of the SH 55 corridor.</td>
</tr>
<tr>
<td>2004: Rapid growth in western Ada County caused 2004 traffic volumes to exceed the 2015 forecasts. The Eagle Road Arterial Study recommended strategies to improve traffic flow along the route. The project moved into the design phase and is called the Eagle Road Improvement Project.2</td>
<td></td>
<td>Construct the recommendations from the Eagle Road Improvement Project. ITD proposed construction in three phases estimated costs in 2004 dollars:</td>
</tr>
<tr>
<td>2006: An extended turn lane and a raised median were implemented from I-84 to Franklin Road. This helped reduce congestion. Signal coordination timing plan was also implemented. The Eagle/Fairview intersection was used in an analysis of innovative designs.3</td>
<td></td>
<td>North Phase: $8,750,000</td>
</tr>
<tr>
<td>2008-current: Evaluation of potential impacts to the regional transportation system due to future development in the northwest foothills is ongoing. ACHD’s Northwest Transportation Study was adopted by the Commission in 2008.</td>
<td></td>
<td>Central Phase - $26,810,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South Phase - $16,410,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SH 55 (Eagle Road), I-84 to River Valley Street. Widen to six lanes. $19,517,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construct Three Cities River Crossing (3CRX) from SH 44 (State) to U.S. 20/26 (Chinden) at four to five lanes including a new bridge. Estimated Cost: $105,359,000</td>
</tr>
</tbody>
</table>

2 This project can be found at http://itd.idaho.gov/Projects/d3/id55eagle/
3 High Volume Intersection Study; Volumes 1-3. Can be found at http://compassidaho.org/reports.htm
State Highway 55 (Karcher Road)

State Highway 55 is vital to the region as a major cross-county connector.

WHY THIS CORRIDOR MATTERS

State Highway 55 (SH 55) connects multiple communities throughout Ada and Canyon Counties. The Canyon County section of the corridor runs fourteen miles from the Snake River, turning east at the Sunnyslope Road corner and following Karcher Road through southern Caldwell and the northwest corner of Nampa before following I-84 into Ada County. SH 55 functions as rural two-lane highway until it runs into large commercial developments in Nampa.

Karcher Road faces increasing demands from residential growth in the southern Caldwell area. Farmland interspersed with new residential subdivisions lines the corridor. Large commercial centers become more prevalent as the road comes into Nampa. This section of road carries over 16,000 cars per day. With multiple access points to all the businesses along the road, safety and congestion are primary concerns.

The Karcher Road Interchange was completed in 2006. The interchange stimulated commercial growth north of I-84 and an increase in traffic. Karcher Road (SH 55) should be widened to a four lane, limited access highway. Daily trips on the overpass at I-84 could reach 58,000 by 2035. 2035 traffic will range from 22,000 east of Pride Lane to 30,000 east of Midway. SH 55 is part of the national highway system.

Goals for Communities in Motion (CIM)

- **Connections**: Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination**: Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment**: Minimize transportation impacts to people, cultural resources, and the environment.
- **Information**: Coordinate data gathering and dispense better information.

Recommendations for State Highway 55 Corridor to meet CIM goals:

- Widen SH 55 to a four lane limited access highway from Sunnyslope to the Karcher Interchange.

Recommendations for State Highway 55 Corridor Public Transportation:

- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs.
- Park-and-ride facilities should be considered.
- This corridor is a likely candidate for major fixed-route services given the residential and commercial uses.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the SH 55 corridor is consistent with the standards of the Idaho Transportation Department.
CHALLENGES AND OPPORTUNITIES

As a primary transportation corridor that crosses several cities and counties, State Highway 55 will carry ever larger volumes of traffic. As the region’s population continues to grow, conflicts will continue to arise between the traffic generated by commuters wanting to efficiently travel long distances and local traffic traveling between nearby homes and businesses.

The corridor has the potential to be both an effective thoroughfare and provide access to the multiple residential and commercial developments surrounding it.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
</table>
| 2006: Widening SH 55 in Canyon County from Marsing to Sunnyslope. $12,087,000.
2006: New Karcher Road interchange completed. $25,400,000.
Intersection improvements, an upgraded railroad crossing bridge, and a new commuter Park and Ride lot. | No major construction is called for in the plan, but design, access management and right-of-way preservation is essential.
Preliminary Development:
Reconstruct Middleton Road and SH 55 intersection. Approximate Cost: $2,177,000 | Widen SH 55 from 2 lanes to 4 lanes as a limited access highway between Sunnyslope Curve west of Caldwell to Karcher Interchange in Nampa. $58,420,000
Provide for necessary transit infrastructure, such as bus pull-outs and shelters, along the urban areas of the SH 55 corridor. |
Ten Mile Road

Ten Mile Road links the high-growth areas of Meridian and Kuna.

WHY THIS CORRIDOR MATTERS

Ten Mile Road stretches twelve miles from US 20/26 in Meridian to the vicinity of 4th Street in Kuna. This corridor provides north-south mobility in Meridian and a connection to Kuna. The two primary north-south corridors in the vicinity are planned to be McDermott and Meridian Roads.

Ten Mile Road is bounded by agricultural uses along the northern part of the corridor. Rapid residential development, however, will soon make this primarily a residential corridor with the exception of some commercial and office uses. In addition, the Meridian Waste Water plant is located along Ten Mile Road at Ustick Road.

The City of Meridian Comprehensive Plan identifies a rail station is in the vicinity of the rail line (Boise Cutoff) and Ten Mile Road. Higher densities and mixed land uses are planned for this area.

Ten Mile Road, between Franklin Road and Overland Road, is planned for commercial use. Further south the corridor is bounded by agricultural uses and is transitioning to residential uses near Kuna.

An interchange at I-84 is expected to be completed in 2010. With the interchange and other improvements, by 2035 traffic volumes will reach near 50,000 on Ten Mile Road at I-84, dropping to 19,000 south of Amity and south of US 20/26.

Goals for Communities in Motion (CIM)

- **Connections:** Provide options for safe access and mobility in a cost-effective manner for the region.
- **Coordination:** Achieve better inter-jurisdictional coordination of transportation and land use planning.
- **Environment:** Minimize transportation impacts to people, cultural resources, and the environment.
- **Information:** Coordinate data gathering and dispense better information.

Recommendations for Ten Mile Road Corridor to meet CIM goals:

- Widen to four or five lanes between Franklin Road and Lake Hazel Road, and Ustick Road and US 20/26.

Recommendations for Ten Mile Road Corridor Public Transportation:

- Ten Mile Road will need to accommodate and encourage non-motorized modes through appropriate design and provision of infrastructure, non-motorized paths, and bus pullouts.

Land use decisions needed to implement the plan:

- Land-use decisions need to ensure transit supportive densities in the area of planned transit/rail stations and other designated growth areas and discourage development outside existing urban areas.
CHALLENGES AND OPPORTUNITIES

Residential development in Meridian and Kuna and construction of an interchange at I-84 is likely to lead to substantial demand on Ten Mile Road. In addition, the City of Meridian Comprehensive Plan identifies a mixed-use transit-supportive compact neighborhood in the vicinity of the rail corridor to support a potential rail station. Growth in Kuna and the access to I-84 provided by Ten Mile will pull demand from SH 69.

Rail and rail feeder bus service may provide alternatives to the auto in this corridor. When rail or bus rapid transit is active along the Boise Cut-off, a station at Ten Mile is planned. The effort to accommodate anticipated automobile volumes while maintaining the character of this future rail station area may be a challenge.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007: Ten Mile/Amity Roundabout Study.</td>
<td>Widen Ten Mile Road from two lanes to five lanes between Lake Hazel and US 20/26 (Chinden). Estimated Cost: $51,941,000</td>
<td>Improvements south of Lake Hazel. The City of Kuna has included a Ten Mile rail crossing in its comprehensive plan. In current dollars, a rail crossing would cost $15-20 million.</td>
</tr>
<tr>
<td>2009-2011: Construction of the Ten Mile Road IC. Widen Ten Mile Road to four or five lanes from interchange project limits to Franklin Road. Open Summer 2011. Estimated Cost: $68,396,000</td>
<td>2015: Widen to 4/5 lanes from Cherry Lane to Ustick Road Approximate Cost: $5,041,000</td>
<td></td>
</tr>
<tr>
<td>2010: Widen from two to five lanes from Cherry Lane to Franklin Road. Open August 2010. Approximate Cost $10,775,000</td>
<td>2011: Widen from two to five lanes from New Overland Road to the Ten Mile Interchange project limits. Approximate Cost: $2,050,000</td>
<td></td>
</tr>
<tr>
<td>Various Ten Mile Road Design Studies.*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ten Mile Road and Amity Road Roundabout. Study by ACHD can be found at www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=133

These ACHD studies can be found at http://www.achdidaho.org/Projects/Default.aspx
US 20/26
(Chinden, Front/Myrtle, & Broadway)

US 20/26 is vital to the region because of its role as an alternate to I-84.

WHY THIS CORRIDOR MATTERS

US 20/26 is second only to I-84 in the amount of regional travel it carries daily and is the longest primary arterial in the two-county region. Since the US 20/26 designation includes large portions of I-84 in eastern Ada County, for the purposes of this plan the focus will be the segment beginning at Broadway Avenue in Ada County and leaving the region in Canyon County northwest of Parma. In 2035, the corridor is forecasted to carry over 51,000 trips per day on its busiest segment east of Eagle Road to 19,000 north of the City of Parma.

The corridor changes character dramatically in its traverse through the region. In Boise, the highway begins as an urban thoroughfare – Broadway Avenue – lined with commercial uses from I-84 to the Broadway Bridge over the Boise River. As the Front Street/Myrtle Street couplet through downtown Boise, the road is bordered by Julia Davis Park and various employment areas, such as the Ada County Courthouse.

Further west, the highway becomes Garden City's commercial backbone. From Cloverdale Road to Eagle Road, the highway has been improved to five lanes serving newer commercial areas and a large business park. From Eagle Road to I-84, the road passes through the developing areas of Meridian, Eagle, Star, Nampa and Caldwell. The highway is only two lanes in many sections, yet still functions as an alternate route to I-84 for many commuters. Current volumes range from 31,000 east of Eagle to 6,000 north of Parma near the state line.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.

Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.

Environment: Minimize transportation impacts to people, cultural resources, and the environment.

Information: Coordinate data gathering and dispense better information.

Recommendations for US 20/26 Corridor to meet CIM goals:

- As an alternative to I-84 to many regional travelers, the US 20/26 corridor from I-84 in Canyon County to McDermott (SH 16) or Eagle Road (SH 55) is recommended to be preserved as an expressway. The section between McDermott and Eagle Roads will need review to determine appropriate standards. US 20/26 from I-84 to Eagle Road is recommended to be built as a four-lane arterial with design treatments determined by collaborative planning among ITD, highway districts and local jurisdictions. West of I-84, US 20/26 will receive operation improvements such as passing lanes and intersection improvements.
- Support implementation of the corridor plan for US 20/26.

Recommendations for US 20/26 Corridor Public Transportation:

- Provide bus service along the corridor.
- Provide for necessary transit infrastructure, such as bus pull-outs, park-and-ride lots, and shelters.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to ensure access to the US 20/26 corridor consistent with the standards of the Idaho Transportation Department.
A six-mile section of US 20/26 between Midland and McDermott could be an expressway with the support for access management and corridor preservation by local communities. Other segments will be more challenging, such as the North Meridian area where several subdivisions were approved. Other segments are unsuitable, such as the segment through the urban core of Garden City. The US 20/26 Corridor Studies have heightened awareness of the importance of this corridor in the regional transportation system and support for its preservation has been received from developers, citizens, and local governments.

Challenges and Opportunities

Past and Current Investments through 2015

A corridor preservation study is currently underway for the segment between Eagle Road and I-84 in Canyon County and is expected to be completed in FY2011. The corridor study will produce a corridor plan, an approved environmental document, and right-of-way plans.

A reconstruction of Exit 29 in Caldwell was completed in 2008.

A portion of US 20/26 in downtown Boise was included in the Downtown Boise Mobility Study that COMPASS adopted in December 2005.

Recommendations pertaining to US 20/26 include pedestrian crossing enhancements, streetscape improvements, and various improvements to traffic operations.

Funded Investments through 2035

- Make operational improvements to US 20/26 between Parma and Exit 25.
- Right-of-way acquisition. Approximate cost: $800,000.

Unfunded Improvements through 2035

- Widen US 20/26 (Chinden) from two lanes to four lanes as a limited access highway between Aviation Way in Caldwell to SH 16/McDermott Road, and six lanes from SH 16/McDermott Road to Eagle Road including high-volume intersection treatments and/or overpasses at appropriate locations: $264,036,000
- Design, alignment, and type of roadway to be determined by the US 20/26 Corridor Preservation Study. Interim improvements may be necessary due to funding limitations. Preserve sufficient right-of-way at major intersections for high volume treatments. The City of Meridian does not support grade separation between McDermott Road /SH 16 and Eagle Road.

1 The US 20/26 Corridor Preservation Study focuses on the section between I-84 and Eagle Road (SH 55). The other study addresses the western section from I-84 to the Oregon border. These studies can be found at http://itd.idaho.gov/Projects/D3/
Ustick Road

The Ustick Road corridor connects cities across Ada and Canyon Counties.

WHY THIS CORRIDOR MATTERS

Ustick Road is one of the longest continuous corridors in the region. It runs thirty-seven miles from the Snake River in Canyon County to Curtis Road in Ada County. Because it connected several communities, Ustick Road was a route for the old inter-urban trolley car system. The road changes in character several times as it connects undeveloped rural areas with developing residential and commercial areas in Caldwell, Nampa and Meridian and ends with established neighborhoods and commercial development in Boise.

In Canyon County, the corridor serves as a east-west arterial. West of Caldwell, farmland borders much of the road. Several new subdivisions are being built, but they are set well back and are separated from the road by fences. Ustick Road is two lanes and most intersections feature two or four way stop signs. The long-range plan calls for a new interchange (unfunded) connecting Ustick Road to I-84, Ustick Road also connects to McDermott Road, which is planned to transform into an expressway, connecting to both I-84 and State Highway 16 (also unfunded).

Traffic volumes currently range between 16,000 trips per day east of Five Mile Road to 4,400 at Can-Ada Road and 2,000 west of Farmway Road. By 2035 travel will increase to 41,000 at Five Mile, 13,000 at Can-Ada, and 8,000 west of Farmway Road if forecasted growth occurs.

Goals for Communities in Motion (CIM)

Connections: Provide options for safe access and mobility in a cost-effective manner for the region.
Coordination: Achieve better inter-jurisdictional coordination of transportation and land use planning.
Environment: Minimize transportation impacts to people, cultural resources, and the environment.
Information: Coordinate data gathering and dispense better information.

Recommendations for Ustick Road Corridor to meet CIM goals:

- Construct new interchange at I-84 and Ustick Road.
- Widen Ustick Road from two to five lanes from Caldwell/Nampa Boulevard to Curtis Road.
- The specific design of roadway widening at different points along the corridor should be sensitive to the needs and character of surrounding neighborhoods, allowing for pedestrian and bike pathways and landscaped medians where desirable.

Recommendations for Ustick Road Corridor Public Transportation:

- This corridor is a likely candidate for major fixed-route services given the residential and commercial uses.
- Development and street design should allow for direct access to transit stops and consider appropriate locations for shelters and bus pull-outs. Park-and-ride facilities should be considered.

Land use decisions needed to implement the plan:

- To reinforce the future land-use pattern, local governments along the corridor are recommended to focus development in designated growth areas.
- Land-use decisions need to take into account the neighborhood area development plans prepared by neighborhood associations bordering Ustick Road.
CHALLENGES AND OPPORTUNITIES

Ustick Road will continue to face increased traffic pressure as the region grows. This challenge will increase if US 20/26 is not improved to carry more regional traffic. Preserving the function of Ustick Road as a thoroughfare while creating a neighborhood friendly facility along several sections will challenge the way jurisdictions implement road design. The opportunity for Ustick Road is that it could become a model for how to design a high-capacity road that also serves neighborhood needs. In Ada County, Ustick Road faces increased pressure from the large amount of new residential development in north Meridian and other development in western Ada County. Several schools in both counties border the road. Consideration of fronting housing and effects on businesses will need consideration. Residents along Ustick in Ada and Canyon Counties are concerned that widening Ustick Road to accommodate more through traffic will negatively affect their neighborhoods.

<table>
<thead>
<tr>
<th>Past and Current Investments through 2015</th>
<th>Funded Investments through 2035</th>
<th>Unfunded Improvements through 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ustick Road connection to Curtis Road was completed in 2002. The extension provided a new connection for west Boise and Garden City residents and eased traffic along the largely residential Mountain View Road.</td>
<td>Widen Ustick Road from two lanes to five lanes between Caldwell/Nampa Boulevard in Nampa and Curtis Road in Boise. Estimated Cost: $134,275,000</td>
<td>Construct new interchange at Ustick Road and I-84. Estimated Cost: $32,528,000</td>
</tr>
<tr>
<td>Ustick Road from Five Mile Road to Cole Road was widened in 2007-8.</td>
<td></td>
<td>Provide for necessary transit infrastructure, such as bus pull-outs and shelters, along the corridor.</td>
</tr>
<tr>
<td>Ustick Road, Meridian Road to Locust Grove Road – Widen to five (5) lane urban section with curb, gutter, sidewalks, and bike lanes. $5,555,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACHD has completed several studies for the Ustick corridor.¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Ustick Road Concept Design, from Eagle Road to Five Mile Road found at http://www.achdidaho.org/Projects/Default.aspx
Ustick Road – Five Mile Road to Cole Road & Maple Grove and Ustick Road & Linder Road Intersection found at http://www.achdidaho.org/Projects/ProjectsPast.aspx
This page intentionally blank.
CHAPTER 6

EXPANDING TRANSPORTATION CHOICES

Over several years, the region has embarked on a concerted effort to identify available transportation options and address transportation needs of everyone. Valley Regional Transit (VRT), the regional public transportation authority for Ada and Canyon Counties, completed a Transportation Service Coordination Plan in 2007. This plan identified better coordination of existing transportation services as one of the priorities in improving mobility and access for the people typically most dependent on public transportation services.

Local Public Transportation Resources

Public transportation is typically the local transportation of people by public conveyance, and the vehicles and system engaged in such transportation. Public transportation systems provide low cost mobility for people who do not, or cannot, operate a motor vehicle because of personal choice, income, disability, or age. An important characteristic of affordable public transportation service is that it provides regular access to as many destinations as possible.

As the region is learning about the existing transportation resources and gaps, strategies and programs are being developed to address unmet transportation needs. Mobility management is an approach that focuses on using all available resources to augment and advance travel options for all people, rather than concentrating on a particular mode of transportation, such as the automobile. Mobility management establishes partnerships and collaboration throughout the community and emphasizes a customer focus in meeting the transportation needs.

There are 37 different public transportation services in the ten-county area of southwest Idaho (in 2009); including services provided by transit agencies, senior centers, and health care and social service providers. This diversity creates a challenge to mobility management in that it has proven difficult to gather information about specific service areas, riders, funding sources and costs, and to effectively coordinate and share transportation resources.
The major public transportation providers in southwest Idaho are discussed below.

Valley Regional Transit¹ was established by vote in 1998 as the regional public transportation authority for Ada and Canyon Counties. Valley Ride, operated by VRT, provides fixed-route services to the cities of Boise, Nampa, Caldwell, and Garden City; operates inter-county transportation routes between Ada and Canyon Counties (through the cities of Meridian, Middleton, Star, and Eagle); and has over 860 bus stops in the Treasure Valley. Paratransit services are available in the cities of Nampa, Caldwell, Boise, and Garden City. Paratransit is a door-to-door service for people who have special needs and live within a ¾ - mile of a fixed route. In calendar year 2009, Valley Ride provided a total of 1,433,078 one-way passenger trips in its service area (Figure 6-1).

![VRT Total Service Area Ridership](image)

Figure 6-1: Valley Regional Transit Total Service Area Ridership

Treasure Valley Transit² is the rural transit provider for eight counties in and around the Treasure Valley. It is also a Medicaid transportation provider; Medicaid trips comprise about 12% of its overall services. Treasure Valley Transit provides transportation for the developmentally disabled in Canyon County along with individual Medicaid trips. It operates Valley County Connections and McCall Transit service in Valley County and Mountain Home Community Transit in Elmore County. Treasure Valley Transit operates Snake River Transit in Payette County, Idaho, and Malheur County, Oregon. In calendar year 2009, Treasure Valley Transit provided a total of 137,848 one-way passenger trips in its combined service area.

¹ http://www.valleyride.org/
Ada County Highway District Commuteride3 is best known for its vanpools, but it also promotes public transportation, carpooling, bicycling, and walking. Commuteride’s vanpool routes extend from Ontario, Oregon, to Mountain Home, Idaho, and from Emmett, Idaho, to Melba and Kuna, Idaho. While most vanpools bring commuters into Boise area employment centers, there are also “reverse” routes from Boise to the Mountain Home Air Force Base.

Park-and-ride lots are an integral part of public transportation options and both VRT and Commuteride have them. COMPASS will be collecting information about the use of the current park-and-ride lots, as well as studying where and how they could be expanded in the future. In calendar year 2009, Commuteride provided a total of 253,295 one-way passenger trips in its over 80 vanpools, which saved 13.3 million single-occupancy vehicle-miles-traveled.

Other, smaller transportation service providers are included in the 3C Local Mobility Plan (2009)4.

Public Transportation and Housing Choices

A recent study about typical transportation expenditures5 found that residents in areas with high quality public transportation saved about $660 annually in total transportation costs. In a COMPASS analysis looking at housing costs and transportation, the range of housing affordability changed significantly when transportation costs are factored in the housing cost6. Table 6-1 displays varying levels of density and location requirements to support different public transportation modes. This information is displayed as a graphic in the Mobility Management Development Guidebook7.

3 http://www.commuteride.com
4 http://www.compassidaho.org/documents/prodserv/reports/3CLMMNPlanAppendices.pdf
5 http://www.vtpi.org/raisetaxes.pdf
6 http://www.compassidaho.org/documents/prodserv/reports/MobilityManagementDevelopmentGuidebook_finalstandard.pdf
7 http://www.compassidaho.org/documents/prodserv/reports/MobilityManagementDevelopmentGuidebook_finalstandard.pdf
Table 6-1: Transit Service Levels and Land Use

<table>
<thead>
<tr>
<th>Mode</th>
<th>Service Type</th>
<th>Minimum Density (Dwelling Units Per Acre)</th>
<th>Area and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Response</td>
<td>Demand response serving general public (not just people with disabilities)</td>
<td>3.5 to 6</td>
<td>Community-wide</td>
</tr>
<tr>
<td>Minimum Local Bus</td>
<td>1/2-mile route spacing, 20 trips per day</td>
<td>4</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Intermediate Local Bus</td>
<td>1/2-mile route spacing, 40 trips per day</td>
<td>7</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Frequent Local Bus</td>
<td>1/2-mile route spacing, 120 trips per day</td>
<td>15</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Express Bus – Pedestrian Access</td>
<td>Five buses during two-hour peak period</td>
<td>15</td>
<td>Average density over 20-square-mile area within 10 to 15 miles of a large downtown</td>
</tr>
<tr>
<td>Express Bus – Auto Access</td>
<td>Five to ten buses during two-hour peak period</td>
<td>15</td>
<td>Average density over 20-square-mile tributary area, within 10 to 15 miles of a large downtown</td>
</tr>
<tr>
<td>Light Rail</td>
<td>Five minute headways or better during peak hour</td>
<td>9</td>
<td>Within walking distance of transit line, serving large downtown</td>
</tr>
<tr>
<td>Rapid Transit</td>
<td>Five minute headways or better during peak hour</td>
<td>12</td>
<td>Within walking distance of transit stations serving large downtown</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>Twenty trains a day</td>
<td>1 to 2</td>
<td>Serving very large downtown</td>
</tr>
</tbody>
</table>

In September 2006, the VRT Board of Directors approved a six-year plan to develop a regional public transportation system in the Treasure Valley. The plan, called *Treasure Valley in Transit*, is a comprehensive plan to expand bus and rapid transit service in the Treasure Valley. It would provide bus services to all cities in Ada and Canyon Counties, and begins the groundwork to develop a high-capacity transit corridor between Ada and Canyon Counties. Currently, the funding to implement the plan is not available.

There are four major types of improvements in the plan:

1. More routes and more frequent service within cities
2. More express bus service between cities
3. The initiation of rapid transit service
4. New transit centers and stops
More specifically, *Treasure Valley in Transit* will provide:

- Significant increase in bus service
- Bus service for all cities in Ada and Canyon Counties
- More express bus commuter service
- Rapid transit connecting Caldwell, Nampa, Meridian and Boise
- Increase in service frequency up to every 15 to 30 minutes on many routes
- Greater frequency of service during peak demand times than during off peak times (most routes)
- Expanded morning and evening service hours each weekday
- Expanded weekend service and hours
- A circulator service in downtown Boise
- Transit centers and other facilities at major transfer locations

Traffic in the I-84 corridor is expected to double in the next 25 years. The Treasure Valley High Capacity Transit Study began in 2007 in conjunction with VRT and other member agencies and consists of three related planning projects: a multimodal transportation center, a downtown circulator, and an east-west high-capacity corridor.

An analysis to examine possible east-west alignment alternatives needs to consider various transit options, including high-occupancy vehicle lanes, passenger rail, bus rapid transit, and transportation system management strategies. A study to begin this analysis of potential corridors (e.g., “paths” or “alignments”) and potential modes (e.g., types of vehicles) was initiated in 2009 to narrow down options to move forward for a more in-depth study. The link to the results of this study and related documents are provided below.9

Cost of Providing Public Transportation

In 2006, *Communities in Motion* described a bus and rail system with rail service between the cities of Nampa and Boise (to Micron). The total capital development cost was estimated to be approximately $1.28 billion, with initial operating costs of $14 million, ramping up to $232 million per year by 2035 (Table 6-2). These estimates include the effects of inflation over the next 25 years. The current service includes 26 routes with an annual operating cost of about $9 million. At build out, the future system would increase services eleven-fold over current levels, providing seven-day per week service, with approximately 11 times more service hours than the current system.

8 For more information, including a map of the planned system, see http://www.valleyregionaltransit.org/Portals/0/TreasureValleyInTransit/TVITPlan.pdf

Table 6-2: Service Levels and Costs for Optimal Transit System10

<table>
<thead>
<tr>
<th>Routes</th>
<th>Weekday (Current)</th>
<th>Weekday (2005)</th>
<th>Saturdays</th>
<th>Sundays</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 local bus routes serving Ada County, includes circulators in Eagle and Meridian</td>
<td>52</td>
<td>$56,229,888</td>
<td>$7,614,464</td>
<td>$3,807,232</td>
<td>$67,651,584</td>
</tr>
<tr>
<td>Downtown Boise Circulator – 2 routes (start with buses and evolve to a streetcar system)</td>
<td>2</td>
<td>$2,162,688</td>
<td>$292,864</td>
<td>$146,432</td>
<td>$2,601,984</td>
</tr>
<tr>
<td>21 local bus routes serving Canyon County including circulators in Caldwell and Nampa</td>
<td>21</td>
<td>$22,708,224</td>
<td>$3,075,072</td>
<td>$1,537,536</td>
<td>$27,320,832</td>
</tr>
<tr>
<td>Rail - Downtown Caldwell to Downtown Boise</td>
<td>1</td>
<td>$3,194,880</td>
<td>$432,640</td>
<td>$216,320</td>
<td>$3,843,840</td>
</tr>
<tr>
<td>Rail - Boise Towne Square Mall to Micron</td>
<td>1</td>
<td>$3,194,880</td>
<td>$432,640</td>
<td>$216,320</td>
<td>$3,843,840</td>
</tr>
<tr>
<td>Bus Rapid Transit along State Street from west of Eagle Road into Downtown Boise</td>
<td>1</td>
<td>$2,162,688</td>
<td>$292,864</td>
<td>$146,432</td>
<td>$2,601,984</td>
</tr>
<tr>
<td>Caldwell into Boise along Ustick Road</td>
<td>1</td>
<td>$2,162,688</td>
<td>$292,864</td>
<td>$146,432</td>
<td>$2,601,984</td>
</tr>
<tr>
<td>Nampa into Boise along Franklin Road</td>
<td>1</td>
<td>$2,162,688</td>
<td>$292,864</td>
<td>$146,432</td>
<td>$2,601,984</td>
</tr>
<tr>
<td>Caldwell into Boise along Chinden Blvd</td>
<td>1</td>
<td>$2,162,688</td>
<td>$292,864</td>
<td>$146,432</td>
<td>$2,601,984</td>
</tr>
<tr>
<td>Between Ada/Canyon and Partnering Counties</td>
<td>5</td>
<td>$5,406,720</td>
<td>$732,160</td>
<td>$366,080</td>
<td>$6,504,960</td>
</tr>
<tr>
<td>Total Routes</td>
<td>86</td>
<td>$101,548,032</td>
<td>$13,751,296</td>
<td>$6,875,648</td>
<td>$122,174,976</td>
</tr>
</tbody>
</table>

Valley Regional Transit’s “high growth alternative” identified improvements to the regional bus system and other improvements that would ultimately support a rail or rapid transit system through the Boise and Nampa corridor. This system was estimated to cost approximately $320 million (in 2005 dollars) over its first five years of development, resulting in an annual operating cost of about $47 million per year in year six, assumed in this analysis to grow over time with inflation and population growth11, 12.

Unfortunately, the public transportation system in the Treasure Valley will not improve much beyond what we have today without a local funding source. If the region wants an efficient public transportation network, and local elected officials continue to support the Community Choices vision for the future, the Idaho Legislature must aid the region in finding a way to pay for the system. Table 6-3 provides summary statistics showing how VRT ranks with a sample of public transportation agencies from communities of similar size, communities with high trips per capita, and communities with a mix of rail and bus service.

10 Based on rates of $88 per hour for bus operations and $130 per hour for rail operations. Costs are shown in current dollars for illustration only.

11 http://valleyregionaltransit.org/Portals/0/Studies/ROCIP/Fig4-3_High_Growth_Ada_Co.pdf.

12 http://valleyregionaltransit.org/Portals/0/Studies/ROCIP/Fig4-4_High_Growth_Canyon_Co.pdf.
Table 6-3: Summary Statistics for Selected Transit Entities

<table>
<thead>
<tr>
<th>Provider/City</th>
<th>Service Area Population</th>
<th>Total Population 2000 (MSA)</th>
<th>Passenger Miles (million)</th>
<th>Operating funds expended (million)</th>
<th>Total operating expenditures per capita</th>
<th>Operating expenses per passenger mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Regional Transit</td>
<td>272,625</td>
<td>432,345</td>
<td>5.0</td>
<td>$8.12</td>
<td>$29.78</td>
<td>$1.40</td>
</tr>
<tr>
<td>Eugene, OR</td>
<td>272,272</td>
<td>322,959</td>
<td>37.4</td>
<td>$32.60</td>
<td>$119.73</td>
<td>$0.80</td>
</tr>
<tr>
<td>Madison, WI</td>
<td>237,433</td>
<td>426,526</td>
<td>44.2</td>
<td>$44.80</td>
<td>$188.68</td>
<td>$0.83</td>
</tr>
<tr>
<td>Reno, NV</td>
<td>320,000</td>
<td>339,486</td>
<td>31.7</td>
<td>$33.20</td>
<td>$103.75</td>
<td>$0.82</td>
</tr>
<tr>
<td>Spokane, WA</td>
<td>334,900</td>
<td>417,939</td>
<td>49.6</td>
<td>$50.60</td>
<td>$151.09</td>
<td>$0.90</td>
</tr>
<tr>
<td>Portland OR Salt Lake City, UT</td>
<td>1,253,500</td>
<td>2,265,223</td>
<td>419.5</td>
<td>$338.40</td>
<td>$269.96</td>
<td>$0.93</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>261,900</td>
<td>2,581,506</td>
<td>538.0</td>
<td>$367.60</td>
<td>$140.36</td>
<td>$0.69</td>
</tr>
</tbody>
</table>

What is the effect of not funding an effective public transportation system? Chapter 5 described future roadway conditions with 1.046 million residents in Ada and Canyon Counties. Many roadways are over capacity, especially during peak hours, the magnitude of travel more than doubles from 12 million vehicle miles of travel today to 29 million by 2035. Public transportation would not eliminate congestion or the need to improve roads. With an estimated 95,000 daily transit trips in 2035, the estimated person mile trips by transit would be less than one million. But much of this would occur on the more congested corridors such as along I-84 or State Street (State Highway 44) during peak times. For commuters frustrated by traffic and parking woes, public transportation would provide an effective choice. In some cases public transportation would offer a long-term alternative for corridors, which are constrained from widening due to impacts on business or neighborhoods. And for many residents who cannot drive, public transportation would provide a means for travel to work, shopping, health care, education, family, and friends. Basically, public transportation enables people to remain part of the community even if they cannot drive.

Table 6-3 shows that public transportation use in VRT’s service area, as measured by passenger miles, is a fraction of that of the selected agencies of similar size. Similarly, funding per capita is also a fraction of others’ levels. It is of interest to note that public transportation expenditures per capita range from $100 to $200 for the similarly sized communities of Eugene, Madison, Reno, and Spokane, compared to $30 by VRT. Funding for the comparable agencies is varied but local funding is the major source for operating expenditures.

13 National Transit Database, 2008 Reports.
Revenue Sources

In the Treasure Valley, revenues for local public transportation stem from two sources, federal and general local funds, with no state funding or dedicated local funding for public transportation at this point. Currently, these federal and local sources are directly related to one another because each dollar of federal funding requires either a 50 percent local match for operating expenses or a 20 percent local match for capital expenses. More specifically, the federal match for operating expenses covers a maximum of 50 percent of the system’s operating loss -- the difference between operating expenses and fare revenues.”

Federal Public Transportation Revenues

About 80 percent of federal public transportation funding comes from the Highway Trust Fund’s dedicated Mass Transit Account. Federal funding accounts for about 40 percent of VRT’s annual budget and is used for preventative maintenance, capital expenditures, and other activities. Once an area reaches a population of 200,000 people, or becomes a Transportation Management Area, federal funds can no longer be used for operations. This restriction already limits available funding in Ada County, and will probably affect available funds in Canyon County after the release of the new urbanized area demographic data from the U.S. Census Bureau by 2012.

Local Public Transportation Revenues

Local revenues come in the form of contributions made by municipalities’ general funds (in proportion to their level of service) and from per capita fees that recover VRT administrative expenditures. Operating revenues are generated from enterprise activities, including cash fares, sales of bus passes, and advertising revenues. VRT has long-desired a dedicated local revenue source, such as a local property tax on automobiles or a sales tax increment. All of the future development alternatives in VRT’s Capital Improvement Plan are based on obtaining a dedicated local revenue source of some magnitude14. Without a dedicated local funding source, the service and system would be expected to increase only to accommodate population growth. Refer to Chapter 12 for more in-depth discussion of funding issues.

Figure 6-2 shows the estimated level of local revenues needed to support a highly developed public transportation system, assuming federal revenues increasing at the rate described above and the continuing lack of any state support.

The estimated level of local funding to build the planned transit system averages approximately $102 million per year including inflation (ramping from $24.4 million in 2010 to $206.8 million in 2035). In terms of 2009 expenses and population, this amounts to about $430 per household in 2010. The current roadway spending amounts to about $310 per capita; fully funded roadway projects would cost about $500 per capita by year 2020.

Bike and Pathways

Ada County has a long history of bikeway planning dating back to the 1970s. As a result there is a 30 mile plus greenbelt that runs along the Boise River and over 150 miles of on-street bike lanes. Ada County\(^\text{15}\) was designated a “Bicycle Friendly Community” by the League of American Bicyclists in 2008. Canyon County has been placing more attention to bicycle transportation in the last decade. Nampa has a bicycle advisory committee and Caldwell has adopted a new “Pathways and Bike Route Master Plan.” Figure 6-3 depicts the current bikeway map for Ada and Canyon Counties.

\(^\text{15}\) http://www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=77
Safe Routes to Schools

Safe Routes to Schools is a national program designed to encourage students to walk and bike to school to promote a healthy lifestyle, reduce traffic congestion, improve air quality, and enhance quality of life in our communities. The Boise School District has the largest program in the valley; the Treasure Valley Family YMCA\(^\text{16}\) is the lead agency for the Boise program. They use “The Five Es” - Education, Encouragement, Enforcement, Engineering, and Evaluation - to make routes safer, children and parents more knowledgeable, and the community more engaged so that more children will walk and bike to school.

Ada County Highway District\(^\text{17}\) has worked with Safe Routes to Schools and has installed a variety of features over the years to make it safer to walk to school. Those improvements include school speed zone flashing beacons, paths and sidewalks, as well as raised curbs, which provide a physical separation between pedestrians, bikes, and motorists.

\(^{16}\) http://www.walkitbikeit.org/home
\(^{17}\) http://www.achdidaho.org/Community/ACHDSRTS.aspx
Complete Streets

A concept that is becoming more popular in the United States is “complete streets.” The concept is that roadways should be planned, designed, and constructed with the needs of all users, not simply motorists, in mind. How this is implemented varies greatly from region to region.

Transit patrons, pedestrians, bicyclists, elderly, persons with disabilities, and children are examples of “other users” to be considered. These were specifically noted in proposed federal legislation in 2009. That legislation would have required provision for such users in any federally funded project. Exemption for a project from meeting these provisions would have required establishing a procedure with specific criteria and evaluations.

A new federal surface transportation act to replace SAFETEA-LU may include some requirement for a complete streets approach. An update is likely to be adopted after August 2010.

COMPASS adopted a complete streets policy in August 2009 to promote roadways with an appropriate balance for motorists, bicyclists, transit, and pedestrians of all ages and abilities. By considering all users of roads, communities can increase their safety, efficiency, and economic vitality. The COMPASS policy includes the following provisions:

1. Identify how all users will be served when designing new or reconstructed roadways.
2. Provide opportunities for involvement with stakeholders throughout the planning process.
3. Consider context of existing and planned land uses.
4. Provide practical and affordable solutions which balance user needs, construction costs, and environmental benefits.
5. Network transportation modes to optimally connect homes, jobs, schools, shops, families and friends.
6. Include appropriate access management practices for safe and efficient movement of users.
7. Promote a visually appealing environment to improve the transportation experience.

Consideration of these elements will be part of the project prioritization process.

As an example of a mobility function a “complete” street can help fulfill, bikeways can increase access and connectivity in a way that provides people with more choices to meet their transportation needs.

Similarly, sidewalks and other facilities that provide for safe and connected walking environments can enhance access throughout and between neighborhoods. The complete streets policy envisions a Treasure Valley where roadways are designed to be safe, efficient, and viable and provide an appropriate balance for all users including, motorists, bicyclists, transit, and pedestrians of all ages and abilities.

18 H. R. 1443. Introduced in March 11, 2009 and referred to the House Committee on Transportation and Infrastructure.
Challenges and Opportunities

Public transportation systems face challenges in meeting a multitude of needs. Speedy and reliable service, regular stops, and flexible schedules can increase ridership. Land use strategies, such as mixed-use land development, transit-oriented development, and pedestrian and bike-friendly streets can all promote transportation choices. Identifying, and better planning for, public transportation destinations such as parks, schools, and major employment centers will enhance accessibility to the system. These efforts may be aided by a federal initiative: The U.S. Department of Housing and Urban Development, U.S. Department of Transportation, and the Environmental Protection Agency are working in partnership to promote and support sustainable communities and better integration of federal programs and funding. One of the goals of this partnership is to support multi-jurisdictional regional planning efforts that integrate housing, economic development, and transportation decision-making in a manner that empowers jurisdictions to consider the interdependent challenges of economic growth, social equity, and environmental impact simultaneously.

Those who need public transportation the most, such as people with disabilities, older individuals, the youth, and people with low incomes, may not be able to use it due to barriers such as limited hours and days of operations, lack of routes, or lack of sidewalks and pathways leading to a bus stop.

There are several steps transit agencies can take to narrow the gaps to meet public transportation needs, including better coordination of transportation resources, and introduction of new technologies, such as reader boards or text messages to enhance information and service delivery to public transportation users. Identifying a variety of funding strategies is critical for providing public transportation systems that work effectively to serve the public. Public transportation systems, like roads, typically rely on funds from federal, state, local, and private sector sources – in addition to fare box revenues.

Additional funding is also needed for determining the high capacity transit option for the region. The Treasure Valley High Capacity Transit Study, complete in 2009, recommended several alignment/mode combinations to be considered for the detailed analysis in the next phase of the alternatives analysis: Boise Cutoff light rail, Boise Cutoff bus rapid transit (BRT), Franklin Road BRT-exclusive, Fairview Avenue BRT-exclusive, Boise Cutoff commuter rail (potential inclusion), and Franklin Road light rail (potential inclusion).

Development of performance measures to track public transportation in the region is underway to inform investments and efficiency. Upcoming projects include establishing a “functional classification” system for public transportation, which could then be factored in to a mode split percentage by transportation corridors.

To learn more about the Treasure Valley High Capacity Transit Study, please visit the website:
http://www.compassidaho.org/prodserv/specialprojects-tvhcts.htm
CHAPTER 7
MANAGING CONGESTION

Background
As the region grows and develops we are increasingly pressured to maximize the potential of our transportation infrastructure — both existing and planned facilities. Demands are placed not only on the capacity of the systems, but desires for better interrelationships with neighborhoods and adjacent development, goals to reduce transportation-related pollution, and fiscal responsibility to use resources wisely while encouraging growth in the economy.

So what needs to be done? To improve the performance of our transportation systems we must have a collaborative, informed approach outlined in a regional process to manage congestion.

Congestion Defined
Congestion is defined as travel time delay in excess of what normally occurs under light traffic or free flow travel conditions. There are two types of congestion: recurring and non-recurring. Recurring congestion is the predictable congestion experienced regularly due to excessive demand over capacity (rush hour congestion). Non-recurring congestion is the congestion caused randomly by accidents, vehicle breakdown, construction work, inclement weather, and special events.

The ratio of peak travel time to free-flow travel time is used to produce an index, which classifies congestion. This ratio is referred to as the Sanderson Index (SI). A SI of 2.0, for example, means that it takes twice as long to travel a given roadway during the peak or congested period as during free flow or ideal conditions. Analysis of the current and historic travel time of a given roadway yields information about trends in congestion on specific routes within cities, districts, or specific locations.
Based on the SI and general location of a roadway, the Treasure Valley Congestion Management System (CMS) defines low, medium, and high levels of congestion. Table 7-1 displays the Treasure Valley Congestion Management System definitions of congestion, which were subjectively established by local transportation experts and endorsed by the COMPASS Regional Technical Advisory Committee. The local experts used the 2003 travel time data and local knowledge to help establish the congestion thresholds for each of three roadway classifications: freeway/interstate, suburban, and urban. Urban roadways are differentiated from suburban roadways as those located in downtown Boise (the central business district of the region).1

<table>
<thead>
<tr>
<th>Roadway Class</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>< 1.25</td>
<td>1.25 – 1.50</td>
<td>> 1.50</td>
</tr>
<tr>
<td>Suburban</td>
<td>< 1.75</td>
<td>1.75 – 2.25</td>
<td>> 2.25</td>
</tr>
<tr>
<td>Urban</td>
<td>< 2.00</td>
<td>2.00 – 2.50</td>
<td>> 2.50</td>
</tr>
</tbody>
</table>

Congestion Management Process

Just what is a Congestion Management Process (CMP)? It is a system for the region to a) identify congestion and the cause of the congestion, b) propose strategies (management and operations) to relieve the congestion, and c) follow-up by monitoring the performance of steps taken. The projects, strategies, and other actions identified in the process become part of the regional transportation plan.

A CMP includes collecting data and identifying congested transportation facilities with the intent of developing appropriate mitigation measures. This system will not eliminate congestion, but will instead slow the rate at which it increases. Federal regulations provide general requirements for a CMP. Generally, a CMP is designed to:

- Define and measure congestion
- Identify and evaluate congestion and its causes
- Identify and evaluate mitigation strategies
- Define implementation responsibilities
- Define an evaluation process
- Include all aspects of transportation planning.

1 Because of time and cost constraints the annual travel time measurements are focused on arterial roadways.
2 Sanderson Index (SI) is a ratio of peak travel time to ideal travel time.
An effective CMP is a systematic approach for managing congestion that provides information on transportation system performance and on alternative strategies for alleviating congestion and enhancing the mobility of persons and goods to levels that meet state and local needs. The CMP results in serious consideration of implementation of strategies (management and operation) that provide the most efficient and effective use of existing and future transportation facilities.

In both metropolitan and non-metropolitan areas, consideration needs to be given to strategies that reduce single-occupant vehicle travel and improve efficiency of the existing transportation system. Where the addition of general purpose lanes is determined to be an appropriate strategy, explicit consideration is to be given to the incorporation of appropriate features into the single-occupant vehicle project to facilitate future demand management and operational improvement strategies that will maintain the functional integrity of those lanes (23CFR 450.320(b)).

Benefits of this Approach:

- **Results in more efficient use of the transportation system**
- **Coordinates priorities and investments in the region for a greater impact.**
- **Enables decision makers to make smarter investments and project selections based on performance monitoring and objectives.**
- **Demonstrates accomplishments through implemented performance measures.**

To learn more about the Congestion Management System Plan, please visit the following website:

Federal Requirements

With the designation of the Boise Urbanized Area as a Transportation Management Area (TMA), a CMP is required. Under 23CFR 450.320, TMAs in non-attainment areas are required to develop a CMP. Some of the requirements and conditions in these and other regulations include:

- Providing for effective management of transportation facilities with travel demand and operational management strategies.
- Enhancing investment decisions and improving the overall efficiency of the area’s transportation systems and facilities.
- Identifying the causes of congestion and identifying and evaluating alternative actions.
- Defining levels of acceptable system performance among differing local communities.
- Establishing a program for data collection and system performance monitoring to define the extent and duration of congestion, to help determine the causes of congestion, and to evaluate the efficiency and effectiveness of implemented actions.
- Identifying an implementation schedule, responsibilities, and possible funding sources for each proposed strategy (or combination of strategies).
- Implementing a process for periodic assessment of the implemented strategies, in terms of the areas established performance measures.

Findings

In 2003, the Treasure Valley CMS was developed by a subcommittee of the COMPASS Regional Technical Advisory Committee – known as the Congestion Management Team. This subcommittee was charged with developing, reviewing, and maintaining the Treasure Valley CMS and its elements. The subcommittee was made up of staff from Federal Highway Administration (FHWA) (local office); Idaho Transportation Department (ITD); Ada County Highway District (ACHD); Association of Canyon County Highway Districts; Valley Regional Transit; Department of Environmental Quality; Idaho Smart Growth; planners from the cities of Boise, Caldwell, and Nampa and from Ada and Canyon Counties; as well as other transportation experts. The Treasure Valley CMS was designed to identify recurrent congestion as it applies to principal arterials and interstates in the urban areas.

Fundamentally, a management system is a framework used to develop a plan, implement the plan, monitor the results of the plan, and take corrective action to improve the performance of the plan.

3 “Congestion Management System Plan,” COMPASS, URL:
http://www.compassidaho.org/documents/prodser/reports/TreasureValleyCMSFinal.pdf
The Treasure Valley CMS was adopted by the COMPASS Board per Resolution 10-2005 on March 21, 2005, and outlines congestion management elements, travel time data collection process, use of the data, specific definitions for congestion, and a “toolbox” of mitigation strategies. The various tools for managing congestion are also known as management and operations (M&O) strategies.

Management and Operations Strategies

Background

Federal statutes require the metropolitan planning process to include the consideration of:

> Operational and management strategies to improve the performance of existing transportation facilities to relieve vehicular congestion and maximize the safety and mobility of people and goods;\(^4\)

Findings

COMPASS’ planning and programming process has focused on regional needs and projects, and evaluation and programming of M&O level projects has been reduced at the direction of the COMPASS Board. In part, this direction was made to focus limited resources available to COMPASS on those areas deemed most relevant to a regional planning agency. However, the new policy direction under SAFETEA-LU to expand consideration of M&O calls for additional effort in this area.

Operation of the Transit Network

Two efforts are underway to evaluate transit networks that incorporate multimodal approaches and/or signal pre-emption. Both are included as projects in the regional long-range transportation plan. One project is the State Street bus rapid transit, which involves Valley Regional Transit; the cities of Boise, Garden City and Eagle; the Ada County Highway District; Idaho Transportation Department; and COMPASS. The second project focuses on the I-84 corridor and will consider signal treatments and bus rapid transit as part of the options.

\(^4\) 23 U.S.C. 134 (h)(1)(G) and 134 (j)(2)(D)
Steps Taken to Ensure Transit Operations are Discussed

COMPASS has partnered with Valley Regional Transit to engage in “mobility management” planning that addresses transit, paratransit, walking, biking, and other non-single-occupancy vehicle modes. Two full-time staff members are committed to these tasks.

Congestion M&O Toolbox

As funds become harder to obtain and traffic needs continue to mount, alternative traffic management solutions can be helpful. Over the past 50 years, building new and wider roads was the preferred method for alleviating congestion, improving travel time and increasing safety. It was based on a time when construction, including right-of-way, was cheaper and technology was cruder. As cheaper and less impactful alternatives, operational and management techniques have become more popular over time. They have resulted in projects with strong benefits that include improved safety and reduced congestion. Both transportation planners and engineers now consider some of these treatments as a part of their solution tool box when determining the future of a roadway or intersection.

Developing applicable congestion mitigation measures to address specific areas of congestion is delegated to each transportation agency in the valley. However, the Treasure Valley CMS does provide some guidance on mitigation measures to local transportation agencies in the form of a “Toolbox.” The “Toolbox” is presented in Table 7-2. With only seven years worth of travel time data collected and only a handful of projects identified, an evaluation of the ”Toolbox” is not yet feasible. As more data are collected, quantitative and/or qualitative evaluations of the “Toolbox” may be possible.

The categories of congestion mitigation measures listed in the “Toolbox” are described below. Additional categories have been identified and others will be defined and included in the future. Specific mitigation measures given in the descriptions are as examples only. The Treasure Valley CMS provides flexibility to implementing agencies regarding mitigation measure identification, selection, and implementation.
Table 7-2: M&O Strategies "Toolbox"

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Area Wide</th>
<th>Corridor / Project Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term (Within 5 Years)</td>
<td>Access Management policies for all congested roadways</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td></td>
<td>Zoning Ordinance Standards</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td></td>
<td>Employer Based Strategies</td>
<td>Additional Roadway Capacity</td>
</tr>
<tr>
<td></td>
<td>Access Management policies for all developments along congested roadways</td>
<td>Non-Motorized Mode Improvements</td>
</tr>
<tr>
<td>Long Term (Greater than 5 Years)</td>
<td>Comprehensive Plan land use strategies</td>
<td>Intersection Improvements</td>
</tr>
<tr>
<td></td>
<td>Intermodal Project integration/design</td>
<td>Preferential Based Strategies*</td>
</tr>
<tr>
<td></td>
<td>New or increased access to transit</td>
<td>Access Management strategies specific to a corridor or project</td>
</tr>
<tr>
<td></td>
<td>Additional transit services</td>
<td>New or increased access to transit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Motorized Mode Improvements</td>
</tr>
</tbody>
</table>

Implementing Agency Legend (note: the current draft only applies to roadway congestion):
- Roadway Agencies (Ada County Highway District (ACHD), Idaho Transportation Department (ITD), all cities and highway districts in Canyon County, and some cities in Ada County)
- Transit Providers (Valley Regional Transit and ACHD Commuteride)
- City and County Level Governments
* See p. 7-10 for definition of Preferential Based Strategies

Source: Based on Treasure Valley CMS, 2005

Three of these tools, Access Management, Innovative Intersections and Intelligent Transportation Systems are discussed in greater detail at the end of this section, along with discussion of new tools to the Treasure Valley – Incident Response Programs and Modern Traffic Signal Operations.

Access Management Policies: Policies that require both roadway agencies and city/county governments to collectively control access to specific types of land use and development. The local governments have authority under the Local Land Use Planning Act to adopt standards for access on public streets. The Idaho Transportation Department adopts access standards for state highways. Recent efforts have been undertaken to improve Access Management on several regional corridors; see discussion at the end of this section. (see Figure 7-1).

Addition of Dedicated Right-of-Way for Transit: Fixed right-of-way transit services depend less on the roadway network. Thus making travel times attractive when compared to a congested roadway network. As ridership on dedicated right-of-way services increase, it is probable that roadway congestion will decrease, especially along those corridors served by both modes. One example of a fixed or dedicated right-of-way transit facility in the Treasure Valley would be a commuter rail service that uses existing rail lines parallel to Interstate 84.
Additional Vehicle Capacity: Increasing roadway capacity by constructing new roads or widening existing facilities allows for more vehicles to use a roadway during a given time period, improving travel times.

Comprehensive Plans: Under the State of Idaho’s State Government and State Affairs Statute (Title 67), Chapter 65 (Local Land Use Planning), local governments are required to develop a comprehensive land use plan for their jurisdiction. Comprehensive plans can designate transit supportive housing densities and establish transportation policies on access to public streets along transportation corridors identified as congested within their jurisdiction.

Employer Based Strategies: These are strategies implemented by employers, which allow employees to alter their work schedules or where they work. These programs include telecommuting; staggered work hours, compressed work weeks, or flex time. By reducing travel demand during peak travel periods, the roadway network may realize travel time improvements.

Intelligent Transportation Systems (ITS): The term “Intelligent Transportation Systems,” or ITS, refers to various methods used to manage traffic through electronics and communications. ITS strategies apply information technologies to the transportation system and vary from changeable message signs to traffic signal interconnections. These types of measures impact roadway congestion because traffic control managers and vehicle operators are provided with better information faster. In October 1997, Treasure Valley transportation agencies began investigating the potential for ITS. In September of 1999, the Ada Planning Association (now COMPASS) published the Treasure Valley Intelligent Transportation Systems (ITS) Plan, Phase II. This document defined existing ITS conditions, defined needs and requirements, established a regional system architecture, and prepared an ITS project implementation plan. See discussion at the end of this section.

Intermodal Transportation Project Integration/Design: Designing and eventually constructing roadway projects to accommodate both motor vehicle travel and travel via alternative modes can reduce demand and thus roadway congestion. For example, planning for the construction of transit stations or pullouts and shelters as part of a roadway expansion project may enable transit service and encourage ridership along a corridor.
Intersection Improvements: In most cases roadway congestion is due to capacity constraints at roadway intersections. When capacity improvements are made to an intersection, travel times decreases. Intersection improvement projects that may increase capacity include changes in signal timing, the addition of turn lanes, and safety improvements (such as better markings, lighting, lane channelization, etc.). In 2007-2008, COMPASS conducted a High Volume Intersection Study in cooperation with the Idaho Transportation Department and several local jurisdictions. See Innovative Intersection discussion at the end of this section for more information.

New or Increased Access to Transit/Additional Transit Services: Changes in transit services that can influence travel time include adding a new route, changing an existing route, or adding buses to an existing route to decrease wait times. Modification to a transit system could encourage more people to use transit versus driving. Valley Regional Transit, the regional transit authority for the Treasure Valley, is primarily responsible for the establishment transit routes and access.

Non-motorized Mode Improvements: These measures include additions or improvements to non-motorized transportation facilities such as sidewalks, pathways, and bike lanes. Improvements to these non-motorized facilities encourage non-motorized travel, possibly reducing the demand for roadway capacity and improving travel time. Non-motorized facility improvements can also result in improved or increased access to transit. Local governments can play an instrumental role in improving non-motorized travel by requiring new developments to include or improve pedestrian access between residential and commercial developments.

Preferential Based Strategies: These strategies give special treatment to non-single occupancy vehicles or non-motorized transportation modes. They promote behaviors that increase auto occupancy rates and/or alternative transportation modes. High occupancy vehicle lanes and traffic signalization prioritization for transit vehicles are examples of these types of mitigation measures.
Zoning Ordinance Strategies: Under the State of Idaho’s State Government and State Affairs Statute (Title 67), Chapter 65 (Local Land Use Planning), local governments have the authority to set zoning ordinance standards to help promote alternative transportation. By establishing minimum standards for housing unit densities and pedestrian/bike facilities in new developments, the cities and counties in the Treasure Valley can promote the use of less congested modes of transportation.

Access Management

Roads have two primary purposes: to get people from a place and to get people to a place. A balance must be reached between the number of driveways and streets intersecting or accessing a major roadway. Too many access points, chaotic turning movements, and speed changes will cause unsafe and inefficient conditions. If there are too few access points, businesses and property owners may object to a lack of accessibility to their property from a public road. As more cars use a road, all the actions involved with getting onto or off a roadway can cause problems. Statistics show that poor access control can increase the chance of side and rear impact accidents. Poor driveway design can lead to back-ups out onto streets, which increases crash possibilities and can cause congestion. Overall, a corridor with poor access management will see a diminished performance over time due to slower travel speeds, unpredictable braking and accelerating, delays associated with accidents, and uncontrolled turning movements. The science regarding the safe and efficient accessing of property and streets is known as access management.

So what are some of the tools evaluated and used to organize the access to property or streets? Several solutions exist and vary greatly in their effectiveness:

- A median can be placed in the middle of a road to prevent turns
- An extra lane can be provided solely for turning movements
- Acceleration or deceleration lanes can be provided (where justified) to assist drivers coming off or entering a roadway
- Properties can share a driveway thereby reducing the number linking to a street
- Construction of a frontage or service/backage road with large developments can limit access to an arterial or highway
- Spacing of streets can be equally distributed to help organize access points

When implemented, access management techniques can reduce the potential for accidents and improve traffic flow. Once conflict points are condensed and simplified, drivers have to carefully plan their route with a little more scrutiny, disruptions to streams of vehicles is minimized, and overall performance should be improved. The improvements all equate into tangible results leading to faster commute speeds, reduction of delay, improvement of air quality, and improvement of safety conditions.
Access Management Benefits

Cost effective investments from access management are numerous and can be demonstrated in a benefit versus cost ratio. With the recent slump in the economy, funding for major projects such as roadway or intersection widening is not as readily available. Furthermore, such projects are now heavily scrutinized due to the impact capacity projects can have of adjacent land uses and the people accessing it. As a means to improve capacity without adding lanes, access management tools are now being instituted along with maintenance projects. So, for example, when an agency resurfaces an existing road, they may add a median as part of the project where it would reduce turning movements and improve traffic flow (Figure 7-2).

Accidents

A major benefit from access management is found in the reduction of accidents. As per the Federal Highway Administration, “according to an analysis of crash data in seven states, raised medians reduce crashes by over 40 percent in urban areas and over 60 percent in rural areas. Poor driveway spacing can also contribute to increased accident rates. As more driveways are permitted to access a major road, more accidents will likely occur. Therefore combining or reducing driveways helps immensely.” (Figure 7-3)

![Crashes per Million Vehicle Miles Travelled](source: Federal Highway Administration)

Pedestrian conflicts can also be reduced by the placement of raised medians as they can provide a place of refuge for people when crossing a street. In the state of Georgia, pedestrian involved crashes were reduced by 45 percent and fatal accidents trimmed by 78 percent over streets which used two-way left turn lanes.
Traffic Conditions

The absence of an effective access management plan or policies can have a significant impact on travel times and congestion. An unstable driving environment translates into a roadway operating much less efficiently. Several studies have been conducted to analyze the impacts of using access management tools. For example, intersections in Cincinnati found that by adding just one signal on a roadway actually increased travel times by 20 percent (see Table 7-3). Furthermore, research has demonstrated that for every 10 access points per mile, average travel speeds decrease 2.5 miles per hour. If 40 points were allowed, the street traffic would slow by up to 10 miles per hour. A local example of a street with a high number of access points is Fairview Avenue, which has 95 access points between Curtis and Cole Roads. With fewer access/conflict points, traffic would flow smoother.

Comparatively, research has shown that simply placing left turn lanes in appropriate locations can actually increase roadway vehicle capacity by 25 percent. In Colorado, a study showed a reduction of total hours of delay by 59 percent on a five-lane road that had half-mile signal spacing and raised medians implemented when compared with quarter-mile spacing of signals. Lastly, strong access management can have an environmental benefit as well. According to the Federal Highway Administration “an ongoing study in Texas found that a ten-mile four-lane arterial with one-half mile signal spacing reduced fuel consumption by 240,000 gallons from increased speed and 335,000 gallons from reduced delay, compared to quarter mile signal spacing.”

Treasure Valley Planning

Examples of various forms of access management programs can be seen throughout the valley. In some cases large medians full of landscaping features, lighting, and other amenities have been built, while in other cases, more subtle projects such as a restricted driveway access may be in place. One example of continual access adjustments is found in the form of intersection projects. In several cases when local agencies design an intersection, left-turn lanes are added. If a driveway access is too close to the intersection, drivers trying to turn from that driveway will have an additional lane to cross making for a higher risk condition. When situations like these arise, an extruded curb or narrow lane median can be placed and changes to property access may be negotiated. Other access policies can be found in agency policy manuals, planning documents, and development agreements. See Figure 7-4 for examples of how access management can be phased.
Area streets with examples of access management:

- Parkcenter Boulevard
- Capitol Boulevard
- Eagle Road, I-84 to Franklin Road
- Broadway Avenue, Rossi Street to I-84
- Curtis Road, Fairview Avenue to Chinden Boulevard
- Veterans Memorial Parkway
- State Street and Mercer Street Intersection
- Garrity Boulevard near Lakeview Park
- Nampa Boulevard, 6th Street North to 3rd Street South
- Glenwood Street and Chinden Boulevard Intersection

Area transportation plans with access management components:

- U.S. Highway 20/26 Corridor Preservation Study
- State Highway 44 Corridor Preservation Study
- State Street Corridor
- Fairview Avenue Corridor (Linder-Orchard)
- Karcher Road
- U.S. Highway 95
- State Highway 55
- Kuna Mora Road Phase I
- South Meridian
- Southeast Boise
- City of Nampa Transportation Plan

Future projects with access management elements:

- Ten Mile, I-84 to Franklin Road Intersection
- Records Drive extension, north of Fairview
- Wainwright extension west of Eagle Road
- North Idaho Center Dr. to Gate Boulevard
- Meridian Road/Main Street couplet
- 30th Street, Fairview Avenue to State Street

Access Management Quick Facts

- An increase of 10 – 20 access points per mile on major arterials increases crash rate by 30 percent.
- Idaho data indicates that 37 percent of all crashes occur at intersections, driveways, and alleys.
- Arterials with well managed access have 40 - 50 percent fewer crashes.
Intersection Innovation

On local street networks, intersections are where congestion is most likely to take place. When roads span miles without having to stop for a traffic signal or stop sign, traffic is usually smooth and efficient. The more traffic flowing through an intersection the more complicated the traffic signal or intersection configuration needs to be. If an intersection is too big it can become dangerous for pedestrians, require lots of property, and become overly stressful for drivers. However, if the design is insufficient, heavy congestion, dangerous traffic conditions, and poor air quality may be problematic. In the Treasure Valley, the busiest intersection is found at Eagle Road and Fairview Avenue. The intersection sees nearly 7,000 cars during a peak traffic hour. As business and homes continue to sprout nearby, more demand and more cars will likely follow. In order to accommodate the demand at this and other busy intersections, engineers and planners are continuing to find new innovative ways to balance demand, cost, and impacts.

Roundabouts

In recent years, roundabouts have gained popularity in the U.S. and the Treasure Valley. Roundabouts are fairly common in other countries but in the U.S. were not viewed as favorable solutions for the past few decades. However, as positive traffic accident data and performance statistics have accrued, the use of roundabout has steadily increased. Roundabouts have a larger footprint than conventional intersections, but when used with proper geometric conditions and need to handle fewer than 25,000 cars per day, they can accommodate significant traffic and reduce overall delay. The improvements are due to their minimal stop time, promotion of constant motion, and accommodation of left turns without dedicated signal time (Figure 7-4).

Additional facts about roundabouts include:

- A 2001 study of 23 intersections in the U.S. reported that converting intersections from traffic signals or stop signs to roundabouts reduced injury crashes by 80 percent and all crashes by 40 percent.5

- As of 2009, over 1,000 roundabouts have been built in the U.S.

• Fourteen congested intersections were studied in Detroit comparing roundabouts against traffic signals. Findings demonstrated roundabouts reduced annual delay by 50 percent more than conventional traffic signals. Since the study, several of the planned roundabouts have been built.

• In projects in both Colorado and Alaska, roundabouts were used and prevented roads from being widened.

• A recent study in six communities where roundabouts replaced traditional intersections found that about two-thirds of drivers 65 and older supported the roundabouts.

Roundabouts may require more right-of-way at intersections, but may also allow fewer lanes (and less right-of-way) between intersections.

In 2006, Nampa Highway District and the city of Nampa jointly built a roundabout at the intersection of Amity and Happy Valley Roads (Figure 7-5). A second roundabout was recently built at the intersection of Happy Valley and Greenhurst Road due in part to the popularity and efficiency found from the original effort. Several other locations in the Nampa area are in discussion for future possible locations including: Midland Boulevard and Lake Lowell, Middleton Road and Orchard Avenue, and the Star and Franklin Road intersection.

Roundabouts have also been recently built in Ada County. The most used was built in 2008 at the intersection of Pine Street and Webb Avenue in Meridian as part of a development agreement. In addition to several smaller roundabouts found on private or residential streets, other locations include two roundabouts on Touchmark Way in Boise and a significant project planned at Amity and Ten Mile Road. In addition, the Harris Ranch planned community in east Boise will include several roundabouts once completed. One future project which will be a first of its kind in the state of Idaho is a “dogbone” type roundabout to be located at the intersection of 36th Street, Hill Road, and Catalpa Drive (Figure 7-6).
High Volume Intersections

In some cases, intersections can become so congested that conventional intersection configurations don’t suffice. When conditions like that exist, all kinds of elaborate, creative, and sometimes costly solutions are warranted. In 2007, COMPASS initiated a High Volume Intersection Study. The study looked at ten of the busiest intersections in Ada County6. The intersections were analyzed for the possible treatment of several high volume designs currently being used elsewhere throughout the nation. The intersections attempt to reduce conflict points and delays seen at busy intersections by dramatically altering where drivers turn or how they proceed through the intersection. Using a similar approach to roundabouts, the idea is to try and keep people moving and reduce the time drivers spend at red lights waiting for their turn. Even if drivers have to perform a U-turn or a series of left turns, keeping people moving is ultimately an improvement for safety, efficiency, and air quality. The study was not intended to prescribe a final solution, but meant to give local officials a chance to see some of the innovative designs that could be used in the future when traffic demands warrant such a unique solution (Figure 7-7).

Figure 7-8: Examples of High Volume Intersections: Bowtie, Jug Handle, Parallel Flow Intersections

The study team identified several of the high volume intersections in the valley then applied the most logical high volume intersection design type. Once the intersections were matched up with local candidates, a traffic demand model was used to demonstrate the results. The software exercise demonstrated very encouraging results in terms of handling high volume, reducing delay, improving air quality, and ultimately proving beneficial to the drivers of the Treasure Valley (Table 7-4). The overall benefit to cost ratio’s ranged from 6:1 to over 45:1.

Table 7-4: Intersection 2010-2030 Return on Investment*

<table>
<thead>
<tr>
<th>ID</th>
<th>Intersection</th>
<th>Concept</th>
<th>User benefits</th>
<th>Concept cost</th>
<th>Baseline cost</th>
<th>Incremental cost</th>
<th>User benefits over incremental cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beacon Light & SH55</td>
<td>CFI</td>
<td>$122.9</td>
<td>$4.3</td>
<td>$1.6</td>
<td>$2.7</td>
<td>46.6</td>
</tr>
<tr>
<td>2</td>
<td>State & Linder</td>
<td>CFI</td>
<td>$120.0</td>
<td>$11.7</td>
<td>$4.9</td>
<td>$6.7</td>
<td>17.8</td>
</tr>
<tr>
<td>3</td>
<td>State & SH55</td>
<td>CFI</td>
<td>$93.9</td>
<td>$15.5</td>
<td>$8.1</td>
<td>$7.4</td>
<td>12.6</td>
</tr>
<tr>
<td>4</td>
<td>State & Glenwood</td>
<td>MUT</td>
<td>$15.5</td>
<td>$8.8</td>
<td>$7.8</td>
<td>$1.0</td>
<td>14.9</td>
</tr>
<tr>
<td>5</td>
<td>Chinden & Glenwood</td>
<td>QR</td>
<td>$37.3</td>
<td>$6.2</td>
<td>$0.0</td>
<td>$6.2</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>Ustick & Cole</td>
<td>Bowtie</td>
<td>$17.8</td>
<td>$2.2</td>
<td>$0.0</td>
<td>$2.2</td>
<td>8.0</td>
</tr>
<tr>
<td>7</td>
<td>Fairview & Curtis</td>
<td>QR</td>
<td>$20.5</td>
<td>$9.9</td>
<td>$5.6</td>
<td>$4.3</td>
<td>6.1</td>
</tr>
<tr>
<td>9a</td>
<td>Fairview & Eagle</td>
<td>QR</td>
<td>$81.5</td>
<td>$12.8</td>
<td>$5.3</td>
<td>$7.5</td>
<td>8.2</td>
</tr>
<tr>
<td>9b</td>
<td>Fairview & Eagle</td>
<td>CFI</td>
<td>$65.5</td>
<td>$13.6</td>
<td>$5.3</td>
<td>$8.3</td>
<td>11.5</td>
</tr>
<tr>
<td>9c</td>
<td>Franklin & Eagle</td>
<td>QR</td>
<td>$42.6</td>
<td>$9.8</td>
<td>$5.9</td>
<td>$3.9</td>
<td>10.9</td>
</tr>
<tr>
<td>10b</td>
<td>Franklin & Eagle</td>
<td>CFI</td>
<td>$93.4</td>
<td>$15.4</td>
<td>$5.9</td>
<td>$9.5</td>
<td>9.8</td>
</tr>
</tbody>
</table>

*Benefits and costs shown in millions of dollars

Source: COMPASS, High Volume Intersection Study, 2007. CFI = Continuous Flow Intersection/Parallel Flow Intersection, MUT = Median U-Turn, QR = Quadrant roadway.

Though the intersections included in the study are due for reconstruction, none are currently programmed using any of the high volume designs used for evaluation in the 2007 study. However, as the economy returns from its 2009-2010 downturn and both growth and demand increase once more, the need for innovative solutions similar to those studied by COMPASS could end up being implemented.

Intelligent Transportation Systems (ITS)

The FHWA Final Rule on ITS Architecture and Standards and Federal Transit Administration’s Policy on Intelligent Transportation Systems (ITS) Architecture and Standards were issued on January 8, 2001, to implement Section 5206(e) of the Transportation Equity Act for the 21st Century (TEA-21). This Final Rule/Policy requires that all ITS projects funded by the Highway Trust Fund and the Mass Transit Account conform to the National ITS Architecture, as well as to US Department of Transportation adopted ITS standards. The Final Rule on ITS Architecture and Standards is published in 23 CFR Part 940.

23 CFR Part 940 states that:

- Regions implementing ITS projects at the time the Final Rule/Policy was issued must have a regional ITS architecture in place by April 8, 2005. Regions not implementing ITS projects at the time the Final Rule/Policy was issued must develop a regional ITS architecture within four years from the date their first ITS project advances to final design.

- All ITS projects funded by the Highway Trust Fund (including the Mass Transit Account), whether they are stand-alone projects or combined with non-ITS projects, must be consistent with the Final Rule/Policy.
• Major ITS projects should move forward based on a project level architecture that clearly reflects consistency with the national ITS architecture.

• All projects shall be developed using a systems engineering process.

• Projects must use US Department of Transportation adopted ITS standards as appropriate.

 Compliance with the regional ITS architecture will be in accordance with US Department of Transportation oversight and federal-aid procedures, similar to non-ITS projects.

Advanced Traveler Information Systems

Due to an emergence of technology in the transportation and engineering fields, most roadway agencies are embracing “smart” technologies. As highlighted in previous sections, traffic detection cameras, dynamic message signs, remote weather information systems, and transportation related fiber optic communications all fall under the umbrella of ITS. Soon, Treasure Valley residents will know how long their expected commute will take via the dynamic message signs at the Locust Grove Bridge provided by radar-based sensors and other devices placed along the interstate. Drivers will know travel times to downtown Boise, the Boise airport, and downtown Nampa. If drivers see an extended commute time, choosing an alternate route could help them reach their destination quicker and ultimately save time and money.

Another example of ITS at work is an email alert system soon to be launched to the public by ITD. Currently, alerts regarding congestion are sent to government agencies, news outlets, and ITD staff. However, the system will soon be made public and officials are looking to include both transit and bicycle route information.

When used as a complete system, ITS applications can provide advanced traveler information. By using advanced traveler information, industry professionals can provide the public with information helpful for route choice, departure time, and even trip planning. Information distributed by cell phone, internet sites, and television and radio outlets are all included elements. Nationally, 511 has been designated as the travel information telephone number. Idaho has implemented a 511 system which includes an Internet web page. This system is available statewide including the Treasure Valley. ACHD maintains a very similar independent web site accessed through the statewide web site or the ACHD homepage. In the near future, Canyon County will also be unveiling its version of a 511 web site.
Idaho 511

As a part of a national effort to help motorists, the state of Idaho began a 511 system encompassing both a website and phone information system in November 2005 (Figure 7-8). With the help of reports from maintenance personnel, closed circuit television cameras, road weather information systems and other tools, information displayed on the website includes roadway delays due to construction, weather, detours, congestion, and road closures. In the first year of operation, Idaho 511 received over 250,000 visits. By 2009, the number of annual hits nearly topped 3 million. Recently the system has expanded to include mobile phone applications as well as transit provider and commercial truck information.

Treasure Valley Services

In the Treasure Valley, additional roadway information is also distributed via the ACHD website, and includes traffic camera images, roadwork, detours, and closures (Figure 7-9). Information is also sent directly by fiber optic cable to three TV stations, 12 radio stations, Idaho State Police, Ada County Sheriff and State Communication Dispatch. In addition, most TV and radio stations in the area have links to the ACHD traffic site. Real time data are also sent to local media and ITD staff. Usage of the site is also very strong with over 125,000 hits in February 2010 alone. Recently, congestion levels on Eagle Road were added with future locations at State Street and freeway diversion routes planned.

ITS Quick Facts:

- In a recent survey regarding ITD services, 74% of respondents who used the 511 site said they altered their travel plans after reviewing the information available.
- 91% of respondents found the site “easy or somewhat easy to use.”
- Of those who had never heard of the 511 system, 64% said they were “Likely or very likely” to start using it.
- As of March 2010, 47 states have a deployed 511 system.
- In the 10 most congested areas of the US, drivers lose between $850 to $1,600 annually in lost time and fuel and spend nearly 8 work days a year stuck in traffic.

Between 2000 and 2009, over $9.5 million dollars have been invested on 23 local and state system ITS projects in Ada County. The City of Nampa (Canyon County) has also invested in ITS projects—four signal interconnect projects and two video/coordination projects totaling $350,000 (all local dollars). No new ITS projects have been solicited for funding through Congestion Mitigation Air Quality (CMAQ) funds since 2009 due to the funding constraints. Ada County is designated as a maintenance area; therefore, ITD is not required to fund the CMAQ program. Roadway agencies are continuing to seek other funding sources for ITS projects.
An ITS implementation plan (*Treasure Valley Intelligent Transportation Systems [ITS] Strategic Plan*) was developed in September 2006. This plan identifies short, medium, and long-range ITS projects in both Ada and Canyon Counties. ACHD and COMPASS staff have researched the ITS Deployment Analysis System (IDAS) software for use in alternative’s analysis of ITS projects. Decisions regarding IDAS are pending further research, funding availability, staff time, training, and data needs.

COMPASS’ involvement in ITS has been fairly seamless due to the unique nature of the single-county highway district, ACHD. ACHD has also been coordinating ITS on the state systems; therefore, providing a single-source for information (Figure 7-10). Staff from all relevant agencies will continue to work together and outline roles in the near future.

ITS Responsibilities at COMPASS

This responsibility is typically assigned to one of the principal planners. Duties include working with ACHD and transportation agencies in Canyon County to keep apprised of ITS projects, being involved in project prioritization, and updating the ITS architecture plan for COMPASS.

ITS Implementation Plan and Regional ITS Architecture

ITS Implementation Plan (*Treasure Valley Intelligent Transportation Systems [ITS] Strategic Plan*, September 2006): COMPASS provided data to the consultant team developing the plan, reviewed draft versions, and consults the plan for the prioritization of projects (projects in the plan get higher priority).

Regional Architecture Plan: COMPASS is actively working with a local consultant to update the regional ITS architecture plan, integrate a newly developed regional transit ITS architecture plan, and train staff on how to maintain regional architecture using Turbo Architecture.

Maintaining Regional ITS Architecture: Once complete, COMPASS staff and ACHD staff will continue to work together to ensure consistency.

7 See http://www.compassidaho.org/planning/studydescriptions8.htm#ITSplan to download the plan.

Modern Traffic Signal Operations

Traffic jams on local roadways usually occur at intersections with other streets. Intersections evolve from initially having no traffic control measures, to perhaps a two or four-way stop, then typically a traffic signal is installed as more vehicles and turning movements warrant. Traffic signals have changed tremendously over the past few decades. Signals used to operate with a simple timer, then graduated to an in-pavement magnetic loop, which when in the presence of a vehicle would prompt the signal to turn. Because loops are placed in the pavement and can deteriorate over time, less costly means for signal operations are now being utilized. Using upgrade software and traffic cameras, traffic managers can now remotely change signal timing while other signals can adapt to traffic automatically. If connected to other signals, entire corridors can even be synchronized so drivers can traverse a corridor or a particular part of town with greater ease. The change in technology means a much smarter, potentially cheaper, more reliable, and flexible network of signals to meet ever increasing demand.

Signal Timing

The easiest way to make positive impacts at intersections is to change the timing of traffic signals to match the changing patterns of drivers. As new homes, businesses, or schools are built driving patterns may shift. Several areas within the Treasure Valley have had timing adjustments resulting in time and financial savings to local citizens. In 2005 downtown Boise had over 100 signals adjusted resulting in an estimated 31 times more benefits than costs. Other areas include the Towne Square Mall (2007), downtown Meridian (2007) Caldwell Boulevard (2004, another update soon), Eagle Road (2007), Karcher Road (2007) Ustick Road (2009) Northside Boulevard (2009) and both State Street and Federal Way (2010). In some cases, timing changes were conducted after an expansion project, while others such as the State Street, Ustick Road, and Karcher Road adjustments were done where expansion projects are still in the future. With the timing adjustments and improved traffic conditions, expansion projects are still important but may not be as crucial in the near term which could help fund other needed projects. An operational improvement can delay, if not eliminate, the need to physically widen the street.
Signal Synchronization

Have you ever been late for an appointment and rushed to get through every traffic light only to stop at seemingly every one? Or have you ever made several green lights in a row and been so happy you told people about your experience? In both cases signal synchronization may have been at work. Engineers have expanded their abilities to time traffic signals based on desirable travel speeds so that traffic signals turn green for drivers maintaining the speed limit. Signal synchronization allows drivers to travel the corridor at the posted speed while ushering them through the busier parts of town. This technology uses very specific timing plans, interconnected signal software, and is usually conducted in areas where backed up traffic can possibly lead to severe safety issues.

In the Treasure Valley, signal synchronization has been used along several corridors. Portions of Ustick Road, Front and Myrtle Streets in downtown Boise, sections of 10th Street in Caldwell, 14 signals along Federal Way, Caldwell Boulevard, and 10 signals on Parkcenter are or in the process of being synchronized. In addition to these locations, in the coming year, the city of Nampa will have 13 of its signals retimed and coordinated to improve traffic flows into and out of downtown.

In the coming months, ACHD will post a video link demonstrating how the signal synchronization efforts work in the area. The site will show recorded video feeds from local streets along with a real time mapping feature demonstrating the location of the video feed along the corridor (Table 7-5).

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Boise Towne Square Mall</th>
<th>Eagle Road</th>
<th>Downtown Boise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals</td>
<td>22</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Delay Reduction</td>
<td>Up to 15%</td>
<td>Up to 16%</td>
<td>Up to 16%</td>
</tr>
<tr>
<td>Benefit to Cost Ratio</td>
<td>30:1</td>
<td>29:1</td>
<td>31:1</td>
</tr>
<tr>
<td>Gallons of Gas Saved Annually</td>
<td>280,000</td>
<td>247,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Reduction of Stops</td>
<td>Up to 10%</td>
<td>Up to 30%</td>
<td>Up to 14%</td>
</tr>
<tr>
<td>Annual Dollars Saved</td>
<td>Not Available</td>
<td>$2.8 Million</td>
<td>$3.5 Million</td>
</tr>
</tbody>
</table>
Remote Signal Abilities

As communications technology has improved so too have traffic signals. Signals have historically been controlled on site through a computer based in a cabinet mounted near the intersection. Information regarding congestion or delay was kept at the intersection therefore causing managers to drive out to the cabinets to make any necessary changes. Today, through the use of fiber optic cable and wireless communications, traffic signal timing plans can be changed in less than a minute. Thanks to another technology, traffic cameras, managers can “see” what is happening at particular intersections or general areas, and make timing adjustments as warranted in real time. By tying fiber optic or wireless communications together with traffic detection cameras, signals can now be adjusted to meet demand in mere seconds.

Boise State football games, concerts at Taco Bell Arena, the Idaho State Fair, and some special events are aided by the remote signal abilities in the valley. In regard to Boise State football, on game day, a traffic management operator adjusts signals in the area of Bronco Stadium to allow more green time into and out of the local area. Results of the system are very encouraging for attendees. In 1997, the stadium crowds could expect to take nearly two hours to disburse. While the system today can get fans out of the stadium area within one hour. When the program first started, managers only adjusted 12 signals, but due to traffic demand the stadium area now includes 25 signals. In the coming years, five more signals currently without remote capabilities will be added to the communications system likely resulting in further improvements to disbursement time. It is also important to remember that since 1997 the stadium seating capacity has grown from 22,600 to a current day 32,000.

Adaptive Traffic Signal Controls

A cutting edge technology gaining traction within the transportation field is a strategy called Adaptive Traffic Signal Control or ATSC. The newest generation of traffic signals is a system that “adapts” to real time traffic conditions. If, for example, an intersection is suddenly very heavy with volume, detectors can tell the signal to provide more green light time for some movements through the intersection allowing the built up traffic to disburse. If on the other hand, a signal that usually sees a greater number of cars than on a particular day, can maintain a longer red light allowing the opposing leg of the intersection to pass through the intersection. Since being implemented throughout the country, ATSC technologies have been found to be very helpful when traffic conditions are unpredictable.
Currently, the adaptive systems can be found in two locations in the valley: near the Idaho Center and the Garrity Interchange ramps with I-84. Drivers may never notice the difference between one signal to the next, however one trip along Can-Ada or Franklin Road during the day, then another after a crowded event at the Idaho Center, and they may quickly realize the benefits of an adaptive system and see how much faster they can get onto I-84 or across the freeway to Garrity.

Important to note is that the newest technology is not always the best solution. An adaptive system’s use was discussed for the Eagle Road corridor from the Interstate north. However, between the predictable nature of the corridor and likely minimal effect, the system was not utilized.

Signal Adjustment Results

Adjustments to the many signals, installation of cameras, remote fiber connections, new timing plans and coordination efforts have resulted in time and financial savings to Valley residents. Though not every signal timing project has had a follow up benefits study, several such studies have been conducted and illustrate several aspects of systemic improvements.

<table>
<thead>
<tr>
<th>Traffic Signal Operations Quick Facts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Treasure Valley has nearly 350 remotely controlled traffic signals</td>
</tr>
<tr>
<td>Remote signal adjustments were implemented with the visits of two U.S. Vice Presidents</td>
</tr>
<tr>
<td>Valley wide, over 400 traffic detection cameras are in place</td>
</tr>
<tr>
<td>Local agencies regularly receive positive emails especially from police authorities praising the assistance provided for disbursing traffic</td>
</tr>
</tbody>
</table>

Incident Response

One crucial strategy for traffic management is found in incident response. Unforeseen incidents usually lead to congestion, secondary accidents, and even increased air pollution for idling cars especially during peak traffic periods. Incidents that may cause backup are seen in the form of traffic accidents, flat tires, engine problems, or even running out of gas.

The principal goals of the program are to improve safety and traffic flow by responding to distressed motorists and roadway debris, to reduce emissions from idling vehicles caught in traffic jams, and to reduce secondary accidents caused by backed-up traffic. With traffic on the interstate increasing from 60,000 cars per day in 1997 to now more than 87,000 daily trips, the number of incidents continue to increase each year. Since its inception, the program has responded to over 100,000 calls, with over 11,000 in 2009 alone. In addition to the Treasure Valley operations, the teams also work State Highway 55 from Horseshoe Bend to the Cougar Mountain Lodge during the Memorial Day, 4th of July, and Labor Day weekends. Crews often help keep traffic from backing up along the stretch of Highway 55 and provide assistance to motorists when cars overheat.
Once a call comes in to local dispatchers, incident management teams are sent to the scene, assess the situation, and then relay necessary information to the state communications center. Once the communications center receives information, they warn motorists using the local dynamic message signs, update the Idaho 511 website, and provide information to local media outlets as appropriate to pass on information to the public.

Though ITD has not conducted any formal study to determine the congestion relief, financial impacts, or air quality improvements brought about with the incident management teams, other states have conducted such research. In the state of Utah, analysis demonstrated a reduction of congestion wait time by approximately 20 minutes since the program began. Even more impressive, when accidents take up two lanes of traffic, the Utah teams managed to decrease congestion wait time by 36% translating into an average estimated savings of 37 minutes per vehicle delayed.

Similar to Utah results, the state of Georgia has also reported impressive financial and congestion savings. The Georgia NaviGAtor program resulted in an average 46-minute reduction in incident duration time and reduced incident delay by 7.25 million vehicle-hours. The program reduced the average incident duration time from 67 minutes to 21 minutes or by 69 percent. There were an estimated 13,544,000 vehicle-hours of delay before the program was implemented and only 6,290,000 vehicle-hours of delay after, resulting in a 54 percent reduction in delay. In 2003, the incident delay reduction alone equaled an estimated $152 million dollar saving to the economy of Georgia.

Incident Response Quick Facts:
- ITD incident response program started in 1997.
- Patrols 21 miles of freeway in Treasure Valley.
- Program currently uses 3 response trucks.
- Operates Monday-Friday, 6 am - 8 pm.
Performance Monitoring

Selecting appropriate performance monitoring techniques is among the most important steps in developing a CMP. Many types of performance monitoring techniques are used across the country, each characterized by certain strengths and weaknesses. The Treasure Valley CMS provides more information on the techniques used to measure congestion. The key technique chosen for the Treasure Valley CMS is travel time.

Since 2003, annual travel time data collection within the urban area on the Treasure Valley’s interstate and principal arterials. These corridors are driven four times or more in each direction during the morning peak (6:30 to 8:30 AM), then again during the afternoon peak (4:00 to 6:30 PM). The period with the highest average travel time is compared to the free flow, or ideal travel period (2:00 to 5:00 AM).

Tables 7-6 and 7-7 below summarize the total miles driven each year and the percent of the system in each congestion category. Between 2003 and 2009 the total centerline miles monitored have increased by over 75%.

Corridor ratings of high, medium, and low determine the points given during the Transportation Improvement Program (TIP) project prioritization process. Only two segments of roadway are identified as highly congested since 2003 – 9th Street from Main Street to Myrtle Street and Idaho Street between Avenue B to 1st Street.

Table 7-6: Ascending (East or Northbound) Travel

<table>
<thead>
<tr>
<th>Year</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>No Data</th>
<th>Total Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Miles</td>
<td>Percent</td>
<td>Miles</td>
<td>Percent</td>
<td>Miles</td>
</tr>
<tr>
<td>2003</td>
<td>7.8</td>
<td>5.1%</td>
<td>10.1</td>
<td>6.6%</td>
<td>129.6</td>
</tr>
<tr>
<td>2004</td>
<td>8.6</td>
<td>4.6%</td>
<td>11.9</td>
<td>6.4%</td>
<td>164.5</td>
</tr>
<tr>
<td>2005</td>
<td>14.3</td>
<td>7.8%</td>
<td>18.2</td>
<td>9.9%</td>
<td>151.4</td>
</tr>
<tr>
<td>2006</td>
<td>15.3</td>
<td>6.0%</td>
<td>17.0</td>
<td>6.7%</td>
<td>194.4</td>
</tr>
<tr>
<td>2007</td>
<td>14.9</td>
<td>5.5%</td>
<td>11.6</td>
<td>4.3%</td>
<td>202.1</td>
</tr>
<tr>
<td>2008</td>
<td>8.5</td>
<td>3.2%</td>
<td>19.6</td>
<td>7.4%</td>
<td>234.6</td>
</tr>
<tr>
<td>2009</td>
<td>6.3</td>
<td>2.3%</td>
<td>24.5</td>
<td>9.1%</td>
<td>235.0</td>
</tr>
</tbody>
</table>
Table 7.7: Descending (West or Southbound) Travel

<table>
<thead>
<tr>
<th>Year</th>
<th>High Miles</th>
<th>High Percent</th>
<th>Medium Miles</th>
<th>Medium Percent</th>
<th>Low Miles</th>
<th>Low Percent</th>
<th>No Data Miles</th>
<th>No Data Percent</th>
<th>Total Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>7.2</td>
<td>4.8%</td>
<td>27.3</td>
<td>18.1%</td>
<td>111.7</td>
<td>73.9%</td>
<td>5.0</td>
<td>3.3%</td>
<td>151.2</td>
</tr>
<tr>
<td>2004</td>
<td>1.0</td>
<td>0.5%</td>
<td>8.5</td>
<td>4.6%</td>
<td>175.8</td>
<td>94.8%</td>
<td>0.1</td>
<td>0.1%</td>
<td>185.4</td>
</tr>
<tr>
<td>2005</td>
<td>9.8</td>
<td>5.3%</td>
<td>16.3</td>
<td>8.8%</td>
<td>159.7</td>
<td>86.0%</td>
<td>0.0</td>
<td>0.0%</td>
<td>185.8</td>
</tr>
<tr>
<td>2006</td>
<td>23.4</td>
<td>9.1%</td>
<td>16.4</td>
<td>6.4%</td>
<td>187.7</td>
<td>72.9%</td>
<td>29.8</td>
<td>11.6%</td>
<td>257.3</td>
</tr>
<tr>
<td>2007</td>
<td>18.9</td>
<td>6.9%</td>
<td>25.7</td>
<td>9.4%</td>
<td>185.0</td>
<td>67.9%</td>
<td>42.7</td>
<td>15.7%</td>
<td>272.3</td>
</tr>
<tr>
<td>2008</td>
<td>11.4</td>
<td>4.3%</td>
<td>38.6</td>
<td>14.5%</td>
<td>214.6</td>
<td>80.8%</td>
<td>1.1</td>
<td>0.4%</td>
<td>265.7</td>
</tr>
<tr>
<td>2009</td>
<td>13.9</td>
<td>5.1%</td>
<td>26.4</td>
<td>9.7%</td>
<td>227.0</td>
<td>83.6%</td>
<td>4.4</td>
<td>1.6%</td>
<td>271.7</td>
</tr>
</tbody>
</table>

Linking Congestion to Prioritization

As part of the TIP development process, projects are ranked according to various criteria. A new TIP prioritization process, approved in September 2009, assigns points to project in the criteria area of congestion mitigation. Project scores in this criterion are based on the threshold in which it has been placed in the CMS for the last three years. Non-roadway construction projects are given additional consideration depending on the type of improvement proposed. Table 7-8 below displays the scoring criteria for roadway projects as an example for how the CMS process is integrated.

Table 7-8: TIP Project Prioritization, Potential Points

<table>
<thead>
<tr>
<th>Assessment Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion Mitigation</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion and includes segment in the high congestion category for the last three years.</td>
<td>10</td>
</tr>
<tr>
<td>Congestion as related to the Congestion Management Process (CMP)</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion and includes segment in the high congestion category for the current year.</td>
<td>7</td>
</tr>
<tr>
<td>Project will mitigate congestion and includes segment in the medium congestion category for the current year.</td>
<td>4</td>
</tr>
<tr>
<td>Applicant must demonstrate congestion mitigation.</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion and includes segment in the low congestion category for the current year.</td>
<td>2</td>
</tr>
<tr>
<td>Not classified as congested in the CMP consistently over the last three years.</td>
<td>0</td>
</tr>
</tbody>
</table>

To learn more about the TIP Project Prioritization Process, please visit the following website: http://www.compassidaho.org/productserv/transimprovement.htm
Future Policy and Planning to Reduce Congestion

In addition to the various projects and plans recently completed, future efforts will continue to be directed by additional high level guidelines. The guidelines for how transportation plans or project designs are to take place are found in policy and governing documents that have either been adopted or are in the process of being adopted by regional entities.

Idaho Transportation Department

A good step in the future could be more formal recognition of local transportation access plans (TAP) between ITD and city or county governments. In some cases a state highway is the main route through town. The access standards may either be made more stringent or relaxed depending on the situation and the needs of the community. Currently, access to state roads is very much dependant on the Idaho Administrative Procedures Act, which doesn’t give any flexibility to a roadway from segment to segment. Access standards are determined by the existing physical conditions of the roadway, without regards to function or planned improvements. The arrangement also limits opportunities for a community or the state to change access needs based on anticipated demand. TAP legislation could help in situations where rapid growth is occurring and outpacing the infrastructure improvements necessary to keep up.

Additionally, ITD is now developing transportation plans that are to be financially constrained. Due to various funding issues at the state and federal level, plans will not include every needed project, but rather display only the most critical and affordable under present budget circumstances. This approach is a significant one in that it puts congestion relief, major bridge repair, and other safety projects at the forefront of importance and may translate into a reduced level of service.

City of Nampa Transportation Plan

The City of Nampa is in the final stages of conducting a major city wide transportation plan. The plan takes careful steps to analyze current and future conditions to help determine the roadway and intersection needs forecasted to the year 2035. The plan will be used as the basis for guiding tax dollars as efficiently and effectively as possible. A unique attribute of the plan is the consideration of roundabouts for intersection treatments. The plan contains an analysis of all intersections to determine eligibility of roundabout use using specific technical criteria. All told, the plan determined 29 intersections throughout the city meet conditions for roundabout implementation.
Another major component to the Nampa Transportation Plan is an attempt to help move congestion in the downtown area without having to make extraordinary capacity additions. The city will be finalizing a downtown alternative analysis which will use both innovative designs and existing streets to help make downtown Nampa a bicycle and pedestrian friendly location.

By limiting capacity solutions and focusing on innovative approaches, the hope is to eliminate the need for unnecessarily wide corridors or intersections which can be barriers to a vibrant city core. Other features of the plan include major additions to bike and pedestrian facilities, as well as a completely updated access management plan. Lastly, as mentioned in a previous section, the city will be conducting a significant signal coordination timing effort in the summer of 2010 which may impact project needs for some time.

ACHD Transportation and Land-use Integration Plan

In 2009, the ACHD Commission approved the final draft of the Transportation and Land-use Integration Plan (TLIP). The plan is an exhaustive look at the best fitting roadway designs for surrounding land uses. The goal is the design lane widths, on-street parking options, bike facilities, sidewalks, and buffer areas in a way that allow the street and land uses to operate in a harmonious fashion. In a downtown for example, a five-foot sidewalk is not appropriate due to the higher volume of pedestrians likely to use them. On the contrary, in a rural setting lane widths should be wider than urban areas due to the nature of the vehicles using them, such as tractor trailers. The TLIP plan analyzed residential, commercial, industrial, downtown, and rural settings to best determine how the streets serving those areas should look. The plan also tries to design roads for all users for a truly multimodal function. Designed in concert with the comprehensive plans of all six cities and the county, TLIP will impact all future intersection and roadway segment construction and be used as the starting point for all planning efforts undertaken by ACHD in the years to come.

From an operation and management perspective, the plan has paved the way for a major update to ACHD’s access management policy, gave specific consideration to transit facilities, contains traffic calming elements, and led to the adoption of a complete streets policy. A master street map and street list were also adopted to clarify which streets belong in each category.⁹

⁹ For more information and the Master Street Map, Street List, etc., see the TLIP project page http://www.achd.idaho.org/departments/PP/TLIP.aspx.
COMPASS Congestion Management Process

The COMPASS CMP process is intended to promote multiple modes of transportation including cars, buses, bikes, and walking. The idea is to determine where the most congested locations are located within the regional transportation network and look to develop goals, strategies, and projects to help reduce the effects of congestion. Congestion can be relieved in many of the ways mentioned previously such as access management, traffic signal coordination, and roundabout implementation. Additional forms of congestion relief can prove successful like increased transit services, time of day signal adjustments, constructing of biking and walking facilities, or perhaps enhancing the connectivity of additional streets in the local area.

Management techniques have also been used in both the public and private sector such as allowing alternative work hours, consolidating work weeks, and telecommuting.

Lastly, the CMP will now begin impacting funding for roadway segments to be constructed in the future. As part of the annual TIP cycle, projects are ranked by using various technical criteria. In 2009, the process was revamped to include information from the CMP annual update (Table 7-9). In addition to other categories, points will now be given to projects based on the level of congestion measured on a corridor over the last three years. For example, if a roadway segment has been in the “high” category for three years, it will receive the maximum number of points under “congestion relief.” By including this into the scoring method, intersections and roadway projects having the most impact may rise to the top faster than previous scoring efforts.

Table 7-9: Prioritization for Congestion Mitigation

<table>
<thead>
<tr>
<th>Scoring Guidelines for Roadways</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion Mitigation</td>
<td></td>
</tr>
<tr>
<td>Congestion as related to the</td>
<td></td>
</tr>
<tr>
<td>Congestion Management Process</td>
<td></td>
</tr>
<tr>
<td>(CMP) Applicant must demonstrate</td>
<td></td>
</tr>
<tr>
<td>congestion mitigation.</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion</td>
<td>10</td>
</tr>
<tr>
<td>and includes segment in the</td>
<td></td>
</tr>
<tr>
<td>high congestion category for the</td>
<td></td>
</tr>
<tr>
<td>last three years.</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion</td>
<td>7</td>
</tr>
<tr>
<td>and includes segment in the</td>
<td></td>
</tr>
<tr>
<td>high congestion category for the</td>
<td></td>
</tr>
<tr>
<td>current year.</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion</td>
<td>4</td>
</tr>
<tr>
<td>and includes segment in the</td>
<td></td>
</tr>
<tr>
<td>medium congestion category for</td>
<td></td>
</tr>
<tr>
<td>the current year.</td>
<td></td>
</tr>
<tr>
<td>Project will mitigate congestion</td>
<td>2</td>
</tr>
<tr>
<td>and includes segment in the</td>
<td></td>
</tr>
<tr>
<td>low congestion category for the</td>
<td></td>
</tr>
<tr>
<td>current year.</td>
<td></td>
</tr>
<tr>
<td>Not classified as congested in</td>
<td>0</td>
</tr>
<tr>
<td>the CMP consistently over the</td>
<td></td>
</tr>
<tr>
<td>last three years.</td>
<td></td>
</tr>
</tbody>
</table>

Source: COMPASS CMS Annual Update 2009
Several parallel efforts of the CMP are ongoing and likely to grow as well. The programs adding a benefit to the valley include ACHD’s Commuteride program, the construction of several park and ride lots, and promotional events such as May in Motion, which continue to demonstrate the benefits of biking, walking, and transit.

Future Policy Quick Facts:
- ACHD’s Commuteride program included 85 vanpools in 2009, averaging 10 riders per van.
- The vans totaled 1.44 million miles driven, saving nearly 14.7 million miles driven otherwise.
- The Nampa Transportation Plan indicates 29 intersections suitable for roundabout construction.
- TLIP contains 18 street typologies for residential, commercial, and other land use contexts.

Conclusion

As part of the Treasure Valley CMS, 2009 travel time data were collected and analyzed to classify congestion on interstate and principal arterial roadways in the Treasure Valley. A fraction of these roadways were identified as highly congested for 2009. The number of roadway segments identified as “high” congestion increased slightly from 30 to 33 during the period between 2008 and 2009. The 33 “high” congestion segments are still far below the 46 segments classified as “high” in 2007. Comparisons between current and historic data sets show some change in congestion classifications.

Although more travel time data need to be collected before trends in congestion and congestion mitigation can be assessed, it appears that signalization improvements, changes in land use, and completion of roadway construction projects contributed to improved travel times. Another additional potential source for the decrease from 2007 numbers in “high” level congestion could be associated with the economic downturn and the reduction in construction related travel. Further analysis will be needed to see how well this trend correlated with the downturn. Travel time forecasts produced by COMPASS’ travel demand model indicate travel times are likely to increase on Treasure Valley interstates and principal arterials over the next 21 years.

The 2009 congestion levels were compared to those encountered in 2003 through and 2008. The amount of congestion data available does not allow for a reliable quantitative evaluation of congestion mitigation measures included in the CMS “Toolbox.” However, a qualitative analysis using forecasted travel times indicates that, as the valley continues to grow, travel times and congestion are likely to increase, despite planned roadway capacity expansions.

Recommendations for M&O and the CMP have been incorporated in COMPASS’ FY2011 Unified Planning Work Program and Budget. The Treasure Valley CMS will also be updated in FY2011 to include these connections and conclusions.
Connection to the Long-Range Transportation Plan

COMPASS’ long-range transportation plan identifies future transportation system needs and sets transportation policies for the Treasure Valley. The Treasure Valley CMS adds value to the long-range transportation planning process by providing better information on current conditions and by offering a process by which future congestion issues can be analyzed on a regular basis.

As part of the long-range transportation planning process, modeling tools are used to qualitatively assess congestion and travel time associated with projected population growth. The travel times produced by COMPASS’ modeling tools cannot be quantitatively compared to the travel times collected as part of the Treasure Valley CMS. This is because COMPASS’ regional travel demand model does not capture the critical role intersection design and signalization has on travel time. However, modeled travel times can provide a qualitative comparison between the travel times collected as part of the Treasure Valley CMS. This qualitative analysis may be used to identify and implement congestion mitigation strategies (or projects) to improve travel time in the future, particularly in locations defined by the Treasure Valley CMS as congested.
CHAPTER 8
ENVIRONMENTAL PROTECTION

Introduction

One of the planning requirements in the federal transportation law of 2005, *Safe, Accountable, Flexible, Efficient Transportation Equity Act – A Legacy for Users* (SAFETEA-LU, U.S. Code Title 23), addresses review of environmental and resource issues. In addition to consultation with federal and state agencies responsible for land use management, natural resources, environmental protection, conservation, and historic preservation, the process includes discussion of potential environmental mitigation strategies.

Environmental Review Process

In 2008, COMPASS initiated an environmental review process to more closely link transportation planning and environment, to allow consideration of environmental, community, and economic goals early in the planning stage, and to carry them through project development, design, and construction. The goal is a seamless decision-making process that minimizes duplication of effort, promotes environmental stewardship, and reduces delays in project implementation.

The process was designed to facilitate consultation and resource agency interaction with COMPASS to focus on areas of “regulatory” concern and identify potential transportation impacts on the environment and other resources. Agencies considered participation and consultation in light of their core mission, and some opted out because the agency perceived no “stake” in the planning area at this time. Sixteen environmental and resources agencies have been active participants in the process.

The process started in fall 2008, and resulted in data sharing, an inventory of environmental amenities and concerns in the planning area, and general mitigation strategies.

Participating Agencies

- Idaho Transportation Department
- Idaho Department of Fish and Game
- Idaho Department of Environmental Quality
- Idaho Department of Water Resources
- Idaho State Historical Society
- Idaho Office of Species Conservation
- Idaho Department of Lands
- Idaho Department of Agriculture – Soil Conservation Commission
- Local Highway Technical Assistance Council
- Ada County Development Services
- U.S. Department of Transportation – Federal Highway Administration
- U.S. Environmental Protection Agency
- U.S. Fish and Wildlife Service
- U.S. Forest Service
- U.S. Bureau of Land Management
- U.S. Natural Resources Conservation Service
Environmental Concerns

While the environmental review revealed a limited number of potential environmental and resource conflicts in the planned (and funded) transportation corridors, they can be appropriately addressed in project design and planning to mitigate impacts to sensitive resources. The following is a brief description of the broad environmental issues and concerns in the regional transportation planning area.

Water Quality: Surface and Groundwater

Typical water quality impacts of transportation projects result from runoff from construction sites and stream or wetland disturbances.

Runoff can be a particular concern in areas with water bodies that don’t meet surface water quality standards and that have a “cleanup plan,” called a Total Maximum Daily Load (TMDL). A TMDL includes recommendations for reducing pollution loading, as well as a monitoring plan to verify compliance. The TMDLs are also tied to U.S. Army Corps of Engineers Section 404 and 401 water quality permit requirements for dredging and filling.

Within Ada and Canyon counties, there are two water bodies with water quality TMDL plans:

The dredging and filling of waters of the United States is regulated under the federal Clean Water Act by the U.S. Army Corps of Engineers, with oversight by the U.S. Environmental Protection Agency (EPA). Preliminary identification of such waters, including wetlands, can be done using National Wetland Inventory maps. Since these maps are general, wetland boundaries must be identified more clearly through a review of soils, vegetation, and hydrology of the potentially impacted property. Some wetlands on the National Wetland Inventory maps may not be regulated under the Clean Water Act, and it is possible there are wetlands that are regulated, but not identified on the maps.

Construction and on-going operation of transportation facilities can result in groundwater effects, such as contamination from sediments and transportation-related chemicals, and loss of aquifer recharge as permeable surfaces are covered by concrete and asphalt.
Wildlife, Fish, and Sensitive Habitats

The likely transportation effects on wildlife include wildlife mortality from road construction activities, wildlife mortality from collisions with vehicles, and modification of animal behavior. Roads fragment animal populations and their habitats, reduce genetic interchange, and limit dispersal of young. The effect of road avoidance caused by traffic disturbance is much greater than just increased mortality.

Improperly designed and/or constructed stream crossings can also create barriers to fish and other aquatic species’ movement.

Roads also influence human development patterns on the landscape, such as where development will likely occur in the future. Transportation projects and associated land uses can contribute to the increased human use and activities in formerly remote areas, spread of exotic and invasive species, and loss and fragmentation of wildlife habitat.

Another consideration is the likely effects on threatened and endangered species (Table 8-1). Issues of concern include:

- Direct effects from construction such as noise disturbance or other disruption of habitat
- Interference with essential wildlife functions such as wintering, foraging, migration, breeding, and/or rearing
- Degradation or loss of essential habitat
- Habitat fragmentation and edge effects
- Collisions between vehicles and animals
- Loss of animal or plant populations
- Impacts to wildlife food resources
- Water quality impacts
- Effects on migration or dispersal of organisms including mammals, reptiles, amphibians, fish, insects, and/or ground dwelling birds, where the project could create or exacerbate barriers to movement.
Table 8-1: Threatened and Endangered Species in Ada and Canyon Counties (April 2009)

<table>
<thead>
<tr>
<th>Listed Species</th>
<th>Comments</th>
<th>Ada County</th>
<th>Canyon County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray wolf (Canis lupus)</td>
<td>Experimental/Non-essential population</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus)</td>
<td>Listed Threatened - Wintering/Nesting area</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bull trout (Salvelinus confluentus)</td>
<td>Listed Threatened</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Idaho springsnail (Pyrgulopsis idahoensis)</td>
<td>Listed Endangered - Mainstem Snake River Only</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Proposed Species

<table>
<thead>
<tr>
<th>Listed Species</th>
<th>Comments</th>
<th>Ada County</th>
<th>Canyon County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slick Spot Peppergrass (Lepidium papilliferum)</td>
<td>Proposed Endangered</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Candidate Species

<table>
<thead>
<tr>
<th>Listed Species</th>
<th>Comments</th>
<th>Ada County</th>
<th>Canyon County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow-billed cuckoo (Coccyzus americanus)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Proposed Critical Habitat for Bull Trout

Air Quality and Climate Change

Emissions from motor vehicles are one of the major sources of air pollution, especially in urban areas. Transportation projects affect air quality in the short-term during construction and in the long-term for those living next to busy streets and highways. In the Treasure Valley, coarse particulate matter and carbon monoxide have historically been the most important air pollutants; ground-level ozone is an emerging problem. Ozone is not emitted directly into the air, but is created by a chemical reaction between oxides of nitrogen and volatile organic compounds in the presence of heat and strong sunlight. The Northern Ada County PM10 SIP Maintenance Plan and Redesignation Request contains motor vehicle emissions budgets for three pollutants: coarse particulate matter, oxides of nitrogen, and volatile organic compounds.

3 Brugge, 2007: http://www.ehjournal.net/content/6/1/23.

4 Ada County/Boise Idaho PM-10 Maintenance Plan. [http://yosemite.epa.gov/r10/airpage.nsf/283d45bd5bb068e68825650f0064cde2/a12c8ea43bf09e88256f30081c72c7OpenDocu](http://yosemite.epa.gov/r10/airpage.nsf/283d45bd5bb068e68825650f0064cde2/a12c8ea43bf09e88256f30081c72c7OpenDocu ment).

5 N. Ada County CO Limited Maintenance Plan. [http://yosemite.epa.gov/r10/airpage.nsf/283d45bd5bb068e68825650f0064cde2/4a1b307e7a16621b88256f300767f7c7OpenDocu](http://yosemite.epa.gov/r10/airpage.nsf/283d45bd5bb068e68825650f0064cde2/4a1b307e7a16621b88256f300767f7c7OpenDocu ment).
The federal government mandates that any transportation projects using federal funds or deemed to be “regionally significant” in nonattainment and maintenance areas cannot contribute to a degradation of air quality (40CFR93). Thus, transportation plans, including this regional long-range transportation plan, must “conform” to State Implementation Plan6. Transportation conformity is demonstrated when a nonattainment or maintenance area can show, within the applicable guidelines and regulations, that planned transportation projects listed in a transportation program or plan will not cause or contribute to exceedances of EPA’s health based air quality standards for pollutants that are of concern in the nonattainment or maintenance area. A finding of nonconformance would prevent the implementation of some federally funded and/or regionally significant transportation projects.

Idaho Administrative Code (IDAPA 58.01.01.567) requires nonattainment and maintenance areas establish an interagency consultation committee (ICC) on transportation conformity. The ICC reviews and approves the assumptions and methodologies employed in the development of the regional emissions analysis for Northern Ada County. A complete listing of the ICC requirements can be found in Idaho Administrative Code (IDAPA 58.01.01.563-574).

Final conformity demonstration reports document and summarize the estimated air quality impacts associated with Regional Transportation Improvement Programs and long range transportation plan (Appendix C). They also contain an emissions budget test for the purposes of demonstrating air quality conformity according to federal requirements.

There is heightened concern for human health from projects that result in air toxics emissions and particulate matter from mobile sources, particularly diesel exhaust. The National Air Toxics Assessment7 asserts that a large number of human epidemiology studies show increased lung cancer associated with diesel exhaust and significant potential for non-cancer health effects. Also, the Control of Emissions of Hazardous Air Pollutants from Mobile Sources Final Rule (66 FR 17230, March 29, 2001) lists 21 compounds emitted from motor vehicles that are known or suspected to cause cancer or other serious health effects8.

6 http://www.deq.idaho.gov/air/data_reports/planning/sip.cfm
7 http://www.epa.gov/ttn/atw/nata.
8 Location of “sensitive receptors” such as schools, day care centers and nursing homes is sometimes used to approximate exposure to air pollutants by sensitive populations, i.e., the young and the old. For examples, please see: http://www.compassidaho.org/documents/prodserv/maps/15KSensitive.pdf http://www.compassidaho.org/documents/prodserv/maps/HighVolSensitive.pdf
Greenhouse gas emissions are a concern related to climate change. According to findings by the Intergovernmental Panel on Climate Change, the United States is responsible for 22 percent of the world’s total greenhouse gas emissions. According to EPA’s US Green House Gas Inventory 2010, the primary greenhouse gas emitted by human activities in the United States is carbon dioxide, representing approximately 85 percent of total greenhouse gas emissions. The largest source of carbon dioxide, and of overall greenhouse gas emissions, was fossil fuel combustion. The five major fuel consuming sectors contributing to carbon dioxide emissions from fossil fuel combustion are electricity generation, transportation, industrial, residential, and commercial.

Transportation is the source of more than 27% of the greenhouse gas emissions in Idaho, a close second to agriculture’s contribution of 28% (statistics from the Center for Climate Strategies report Idaho Greenhouse Gas Inventory and Reference Case Projections 1990-2020, Spring 2008.)

Hazardous Waste and Contaminated Sites

Contamination can be a result of current or historic land uses, for example, leaking underground storage tanks, or activities such as dry cleaning plants, auto body shops, industrial facilities, or fuel/chemical storage facilities. For example, because of these concerns, an acquisition of the Union Pacific Boise Cutoff rail corridor would require negotiation and limitation of liability to the public agency that would purchase the corridor for public transportation use.

Soil and groundwater contamination from hazardous substances and petroleum products is often encountered on transportation projects. Also, some projects may generate hazardous materials. For example, projects with structures (enhancement or bridge projects) may involve asbestos-containing materials and/or lead-based paint requiring testing and analysis during project development. During project development, an initial site assessment can also uncover existing contamination via site visits and soil testing.

Noise

The level of noise, defined as unwanted sound, is governed by the Federal Highway Administration (FHWA) regulations, and Idaho Transportation Department (ITD) noise analysis guidelines, as well as local ordinances. Transportation related noise typically depends on:

- Traffic volume
- Speed of traffic
- Percentage of trucks in the flow of traffic
- Distance to the highway
- Intervening topography and structures (including grades and intersections)
- Atmospheric conditions

New projects and alternatives within a corridor must analyze existing noise levels and predict future noise levels to determine noise impacts. Noise abatement will usually be necessary only in frequently used areas that would benefit from a lowered noise level, such as residential areas, parks, nursing homes, etc.

Social and Economic Conditions and Environmental Justice

Communities adjacent to or bisected by a transportation project usually will experience social and economic changes. Checklists prepared by ITD focus on three areas of impact:

- **Social impacts** cover community cohesion (neighborhood population characteristics and linkages with churches, schools, and other community facilities); parks and recreation activities and facilities; population characteristics and growth; government, religious and social facilities and services; pedestrian and bicycle facilities; and environmental justice.
- **Economic impacts** cover overall economic climate, farm and business activity, employment, property values, and local economic issues.
- **Relocation impacts** cover population characteristics (ethnicity and race, handicapped, elderly, family, income level, owner/tenant status); businesses (numbers and types of businesses and farms); employment; availability of replacement sites; and long term stability of the area.

The FHWA publication, *Community Impact Assessment: A Quick Reference for Transportation* [publication No. FHWA-PD-96-036, HEP-30/8-96(10M) P], and pertinent websites provide further information and guidance. For related information on environmental justice issues, see The Civil Rights Act of 1964, Title VI (§ 2000d et seq.) of Chapter 21 of Title 42, The Public Health and Welfare.

12 Environmental Process Manual, Section 1300 Noise.
http://www.itd.idaho.gov/manuals/Online_Manuals/Environmental/Environmental.htm

According to the 1994 Executive Order 12898 *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, federal agencies are required to identify and address disproportionate adverse human health and environmental effects, including the interrelated social and economic effects of their programs, policies, and activities on minority and low-income populations in the United States. This environmental justice analysis requires studies of communities affected by transportation projects and requires effective community outreach to correctly identify potential impacts. The analysis to identify areas with minority populations and low-income populations was conducted and mapped for Ada and Canyon Counties\(^\text{14}\). This process is intended to ensure that a project avoids disparate/disproportionate effects on minority and low-income populations.

Areas of Concern

The purpose of compiling the environmental and resource data and the use of maps to display the information is to help identify general “areas of concern” that could trigger relevant agencies to be invited into the transportation planning process as early as possible. The main areas of concern center around sensitive habitat: floodplains, wetlands, and the Boise Foothills. The map below depicts wetlands, wildlife zones, and deer and elk habitat (Figure 8-1).

\(\text{14} \text{ http://www.compassidaho.org/documents/prodserv/AdaCan_EnvJust.pdf}\)

Figure 8-1: General Areas of Environmental Concern

Communities in Motion – Page 8 - 8 September 2010
Floodplains

Building transportation facilities across a river or stream (transverse) or along a river or stream (longitudinal) can trigger a National Environmental Policy Act (NEPA) process. The 100-year floodplain boundary is the trigger point in Idaho. (A 100 year floodplain means that in any year, there is a 1% chance of flooding—not that flooding would only occur once every 100 years.) For work in floodplains that requires permit approval, environmental documentation must explain the impacts the project will have on the areas and on the resources within the areas. Furthermore, Presidential Executive Order 11988 (May 24, 1977) directs federal agencies to avoid to the extent possible adverse impacts associated with floodplains and to avoid direct or indirect support of floodplain development. Longitudinal intrusions are of special concern.

Currently only one of the three recommended new river crossings along the Boise River in the long-range transportation plan is shown as funded:

- State Highway 16 extension from State Highway 44 to Interstate-84 (environmental work underway) – Funded, but construction funds still need approval in a future legislative session.
- Vicinity of Franklin Road in Canyon County (study only) - Unfunded
- Three Cities River Crossing connecting State Highway 20/26 to State Highway 44 between Cloverdale and Fairview (environmental work completed in 2006) – Unfunded

Widening of existing river crossings is recommended, but currently unfunded, at both Middleton Road and Linder Road.

In addition to the Boise River crossings, a number of flood zones along area streams would be affected by the recommended roadway projects in the plan.

Wetlands

Wetlands are areas that are inundated or saturated by surface or groundwater and support vegetation typically adapted for life in saturated soils. Wetlands generally include swamps, marshes, bogs, and similar areas and provide important amenities, including groundwater recharge, flood flow alteration, water quality improvements, erosion control and shoreline stabilization, and fish and wildlife food and habitat.

Impacts of transportation projects may harm wetlands and other aquatic resources due to increased sediment loads and deposition; toxic runoff; alteration of natural drainage patterns; water level increases or decreases; wetland filling or displacement; wetland draining due to channel straightening, deepening, or widening; and development in the wetland buffer areas that protect and shield the wetland from adverse impacts to water quality and habitat functions. When wetlands are adversely affected by a transportation project, compensation for the impacts are required by minimization and mitigation, such as restoring or enhancing existing wetlands and/or creating new wetlands, usually at a higher ratio than the area impacted by the project.
Public and Outdoor Recreation Lands

A significant publicly owned park, recreation area, wildlife or waterfowl refuge, or historic site, as well as designated wild and scenic rivers are subject to federal requirements (Section 4(f) of the Department of Transportation Act of 1966 (DOT Act) [49 USC 303]; [23 CFR 771.135]) and need to be considered in any NEPA document. Section 4(f) of the DOT Act 15 declares a national policy to preserve, where possible, “the natural beauty of the countryside and public park and recreation lands, wildlife and waterfowl refuges, and historic sites.” However, a NEPA action does not always require a “4(f)” evaluation.

Transportation projects can cross those “special lands” only if there is no “feasible and prudent alternative” and the sponsoring agency demonstrates that all possible planning to minimize harm has been accomplished. Any time a new alignment or expansion of an existing alignment threaten to impact a Section 4(f) property, the proposed alternatives must include an avoidance alternative. The avoidance design will document the information needed to determine if avoidance is feasible and prudent, and if it may exhibit cost considerations of extraordinary magnitude.

In addition, before approving use of these lands for a transportation project, supporting information must demonstrate that there are unique problems or unusual factors involved in the use of alternatives that avoid these properties or that the cost, social, economic and environmental impacts, or community disruption resulting from such alternatives are extraordinary. In addition to mandating protection of certain land uses, FHWA rules require that when the project’s impacts in the proximity of the protected area are so severe that the resources’ activities, features, or attributes are substantially impaired, then Section 4(f) is also called into effect even if the project does not actually intrude into the protected use. Impacts may include:

- Resources affected by noise levels.
- Aesthetic features of the resource compromised by the transportation facility.
- Access restricted or substantially diminishing the utility of the resource or special area.
- Vibrations impair use of the resource and diminish the value of wildlife habitat.

Prime Farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, fiber, forage, oilseed, and other agricultural crops with minimum inputs of fuel, fertilizer, pesticides, and labor, and without intolerable soil erosion. Prime farmland includes land that possesses the above characteristics and may include land currently used as cropland, pastureland, rangeland, or forestland. It does not include land already in or committed to urban development or water storage.

Unique Farmland is land other than prime farmland that is used for production of specific high-value food and fiber crops. It has the special combination of soil quality, location, growing season, and moisture supply to economically produce sustained high quality or high yields of specific crops when treated and managed according to acceptable farming methods. Examples of such crops include lentils, nuts, annual cropped white wheat, cranberries, fruits, and vegetables.
Agricultural and Farmland

The loss of productive farmland to highways, urban sprawl, and other types of development is a cause for concern. Highways may increase the pressure for conversion from farming to other uses. By making inaccessible areas more accessible, highways increase potential for development. In turn, development increases land values and property taxes, tending to make farming economically infeasible. Adjacent development is seen as incompatible with farming, and farming activities may be considered a “nuisance” by newcomers. Additional traffic moving at high speeds creates a safety hazard for slow moving farm machinery. Farmlands defined as “prime,” “unique,” or of state or local significance are protected by federal and state legislation.

Much of the prime farmland within the areas affected by the proposed transportation corridors are within areas of impact already identified for urban development.

Historical, Cultural, and Archaeological Resources

Areas of historic, cultural, or archeological resources are subject to several state and federal regulations, including the National Historic Preservation Act of 1966; the DOT Act, Section 4(f); the Archaeological Resources Act of 1979 which applies to archaeological resources on tribal lands and non-tribal lands under federal jurisdiction; the Idaho Graves Protection Act; and the National Environmental Policy Act, 42 USC Section 4231, which requires that all actions sponsored, funded, permitted, or approved by federal agencies undergo planning to ensure that historic and cultural resources are given due weight in project decision-making.

Mitigation Strategies

The following sections discuss general mitigation strategies, as identified by the participating environmental and resource agencies, for the long-range regional transportation plan and its projects. According to NEPA, mitigation is defined as:

- Avoiding the impact altogether by not taking a certain action or parts of an action.
- Minimizing impacts by limiting the degree or magnitude of the action and its implementation.
- Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
- Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
- Compensating for the impact by replacing or providing substitute resources or environments.
The FHWA document called *Eco-Logical: An Ecosystem Approach to Developing Infrastructure Projects*\(^{16}\) encourages federal, state, tribal, and local partners in infrastructure planning, design, review, and construction to use flexibility in regulatory processes. Specifically, *Eco-Logical* puts forth the conceptual groundwork for integrating plans across agency boundaries and endorses ecosystem-based mitigation of infrastructure impacts that cannot be avoided.

Water Quality and Stream or Wetlands Disturbances

Avoiding activities that would harm wetlands during the design, construction, and maintenance of the transportation system is the preferred option. If this is not possible, general mitigation strategies encourage protection, restoration and enhancement of natural wetlands that are unavoidably and adversely affected. These strategies include wetland mitigation banking and advanced mitigation such as wetland preservation to prevent overall net loss of wetland functions.

General water quality/run-off mitigation strategies may include:

- Establishing procedures for control of runoff from construction projects.
- Designing storm sewers to catch sediment runoff and prevent it from reaching streams and rivers.
- Using basins to detain runoff and allow absorption.
- Reducing materials such as sand on icy roads.
- Increasing road/surface sweeping to pick up materials before they can enter the storm sewers.
- Using permeable surfaces where appropriate to reduce the loss of aquifer recharge.

Generally, all projects that may result in the placement of fill into wetlands or other waters of the United States must be evaluated to determine how to avoid the filling, and if unavoidable, how to minimize and mitigate for the loss. Furthermore, if federal funds are accepted for a project, the transportation agency will be subject to FHWA policies regarding wetland mitigation. Such project may also be subject to permit requirements, such as 401/404 “dredge and fill” permit applicability/certification process or potentially a “Short Term Activity Exemption” from the Idaho Department of Environmental Quality (DEQ) (streams only). The agencies to be involved are ITD, local highway districts, EPA, the Army Corps of Engineers, Idaho Department of Water Resources, and DEQ\(^{17}\).

\(^{17}\) For additional information, see http://www.compassidaho.org/documents/prodserv/reports/EnvironmentalReviewProcessRPT_September%202009.pdf
The federal *Compensatory Mitigation for Losses of Aquatic Resources, “Mitigation Rule”* (40 CFR Part 230) explains the responsibilities of the permittee for ensuring the mitigation selected succeeds in replacing the lost waters. Traditionally, a mitigation site is located at or adjacent to the impact site (i.e., on-site compensatory mitigation) or at another location generally within the same watershed as the impact site (i.e., offsite compensatory mitigation). Participation in an in-lieu fee program to mitigate for losses may be possible in the near future. The Fish and Wildlife Foundation is developing such a program.

Run-Off (Stormwater)

Strategies to mitigate water quality impacts from run-off include meeting construction general permit requirements (if applicable) and developing and implementing a Stormwater Pollution Prevention Plan, or implementing stormwater best management practices\(^{18}\). If polluted stormwater runoff is transported through a “municipal separate storm sewer system,” an operator must obtain a National Pollution Discharge Elimination System permit and develop a stormwater management program\(^{19}\).

Recommended erosion and sediment control practices can be found in the *Idaho Construction Site Erosion and Sediment Control Field Guide*\(^{20}\) published by the Idaho Small Business Development Center. Early involvement of ITD, EPA, Idaho Department of Water Resources (IDWR), U.S. Army Corps of Engineers, local canal or drainage district, health districts, local public works, and local highway district can assist with successful mitigation.

Groundwater

Evidence of decreasing aquifer levels, such as well test data, diminished stream base flows, or dry streambeds, indicates groundwater impacts. General mitigation strategies include establishing source water protection areas, preventing pollution, avoiding excessive drawdown of groundwater supplies, and implementing effective well head protection.

General strategies to mitigate excavation impacts on groundwater include avoiding areas of higher groundwater and developing a plan for de-watering in areas of expected groundwater intrusion. Mitigation activities should involve DEQ, IDWR, EPA, ITD, and local highway districts in mitigation activities.

Wildlife, Fish, and Sensitive Habitats

General mitigation strategies include identifying critical wildlife habitat areas and avoiding and minimizing impacts to those areas. The preferred mitigation strategy is to avoid such areas or habitat, followed by restoration on-site, replacement, and specific mitigation measures.

The following measures could be taken to mitigate impacts on wildlife when avoidance and minimization aren’t feasible:

- To avoid mortality from road construction activities:
 - Locate future roadways away from important wildlife habitat
 - Conduct a survey of wildlife present prior to construction
 - Alter timing of construction to limit impacts to wildlife

- To avoid mortality from collision with vehicles:
 - Locate future roadways away from important wildlife habitat
 -Alter and enforce speed limits
 - Establish wildlife crossing areas, including underpasses, overpasses, etc.
 - Use wildlife-proof fencing in conjunction with wildlife crossing areas
 - Use de-icing chemicals that don’t attract wildlife
 - Remove or alter vegetation composition along roadways so that vegetation doesn’t attract wildlife
 - Properly design and construct stream crossings to keep wildlife off roadway

- To avoid disruption of landscape processes and loss of biodiversity:
 - Integrate transportation and land use decisions early on in both respective planning processes
 - Locate future roadways away from important wildlife habitat
 - Mitigate for the loss of habitats, and the disruption of ecological processes, in important wildlife habitat areas
 - Consider replacing, protecting, or restoring lost habitat
 - Look beyond the actual footprint of the roadway when determining the number of acres of habitat loss
 - Properly design and construct stream crossings
 - Use other best management practices

- To avoid spread of exotic or invasive species:
 - Monitor for exotic species and treat as necessary. Maintain this monitoring and treatment program for a specific number of years after construction is complete.
 - Use best management practices.
 - Ensure plantings used for projects do not include exotic or invasive species.

For ecological processes, habitat fragmentation can be mitigated by providing bridges or other hydrological connectivity structures to span streams, wetlands, seepage areas, riparian areas, shorelines, open water, and so on. These structures are often designed to accommodate both wildlife and water movement.
The Idaho Department of Fish and Game, EPA, Idaho Department of Lands, U.S. Forest Service, U.S. Bureau of Land Management, other public land management agencies (if such lands are affected); U.S. Fish and Wildlife Service (if threatened, endangered, proposed, or candidate species habitat is involved); and ITD, FHWA, IDWR, DEQ, counties, and local highway districts can assist with mitigation, especially when the agencies get involved early in the process.

The Idaho Comprehensive Wildlife Conservation Strategy, 2005, recommends ecosystem management to ensure species survival and biodiversity. It is critical that land use and transportation plans fully consider and incorporate the elements of this strategy to help preserve and conserve the region’s species, habitats, and genetic diversity. The Owyhee Uplands section of the plan pertains to the Treasure Valley and provides lists of species found in the area. The Idaho Batholith section may be appropriate in reference to the upper elevations of the Boise Foothills. Other relevant sources of information include:

- Idaho Wetland Conservation Strategy (Idaho Wetlands Working Group)
- U.S. Fish and Wildlife Service recovery plans for bull trout (for above Lucky Peak dam, if applicable), and other plant and animal species
- The Boise River Total Maximum Daily Load for total suspended solids
- Idaho Conservation Data Center (formerly the Natural Heritage Program) data
- Existing local watershed protection/restoration plans
- Idaho’s Strategic Plan for Invasive Species

Planning for permeability in developed and developing areas would mitigate stormwater effects in the Boise River. Both land use and transportation planning should emphasize/reuire redevelopment over new development; require low impact development and strongly encourage zero impact development; restore permeability, habitats, and ecosystems wherever possible; and avoid and/or fully accommodate sensitive ecological areas, such as streams, riparian areas, wetlands, buffers, groundwater recharge areas, etc.

The Transportation Enhancement Program (23 U.S.C. 101(g)-133(b)) offers broad opportunities and federal dollars for actions to integrate transportation into communities and the natural environment. Eligible activities include acquisition of scenic easements and scenic or historic sites, scenic or historic highway programs, landscaping and other scenic beautification, historic preservation, preservation of abandoned railway corridors (including the conversion and use for pedestrian or bicycle trails), and control and removal of outdoor advertising.

Historical and Archeological Resources

As with many environment issues the first preferred mitigation strategy is to avoid adverse effects. If this is not possible, relocation, marking, and other appropriate measures should be pursued. Early consultation with the State Historic Preservation Officer and other interested persons and parties during the early stages of planning is key to successful identification and mitigation of potential adverse effects.

Agricultural and Farmland

As a general mitigation strategy, a more compact and walkable community design, and maintaining and maximizing the use of existing transportation infrastructure would help avoid or minimize prime farmland encroachment.

There is no mitigation for loss of prime farmland or a change in use to any non-agricultural use. Increased soil erosion can be mitigated by using accepted erosion control methods during construction and the design of adequate water removal systems for runoff.

When federal funds are used for transportation, loss of prime and important farmlands is monitored. Avoidance of prime farmland is always preferred. The process should involve local planning and zoning agencies and the Natural Resources Conservation Service.

Hazardous Waste and Contaminated Sites

Discovery of localized contamination or abandoned underground storage tanks could be mitigated by conducting a site assessment/prior use inventory for known or suspected contamination using DEQ's Waste Division Inventory\(^{24}\).

There may be advantages to the use of Brownfield sites, or other sites contaminated with hazardous wastes, for transportation projects because the sites would be cleaned up and re-used, thereby avoiding impacts to uncontaminated sites and providing benefits to the community. Such projects should involve DEQ, EPA, ITD, local highway districts and cities and counties early in the process.

Air Quality and Climate Change

As a general mitigation strategy, a more compact and walkable community design, expanded public transportation and non-motorized transportation systems, and maintaining and maximizing the use of the existing transportation infrastructure would likely reduce transportation related air emissions.

Mitigation measures for fugitive dust and emissions during construction include developing a dust prevention and control plan prior to the project, according to local ordinances. Design and implementation of mitigation measures should include consultation of ITD, local highway district, cities, counties, and DEQ.

\(^{24}\) http://www.deq.idaho.gov/Applications/WDI
Conclusion

The environmental review process is an on-going consultation with environmental and resource agencies to help identify potential transportation related environmental and resource concerns, based on available data (Table 8-2). As part of the process, COMPASS makes the data and associated maps available on its web site (see Appendix B in the Environmental Review Process Report 2009). With the continued participation of the pertinent agencies, this process can enhance the ability to foresee environmental and resource concerns and potential impacts, and to avoid or mitigate them more efficiently and effectively. The following maps are available at www.compassidaho.org/prodserv/mapgis-maps_cim_environmental.htm

1. Environmental Themes Overlay
2. Birds of Prey Area (Bureau of Land Management)
3. Bridges and Dams (Idaho Transportation Department-Idaho Department of Water Resources)
4. Storage Tanks (Department of Environmental Quality)
5. Environmental Justice Areas – Ada County (COMPASS)
6. Environmental Justice Areas – Canyon County (COMPASS)
7. Habitat for Elk Winter Range, Deer Winter Range, and Wildlife Zones (Idaho Department of Fish and Game)
8. Habitat for Slick Spot Pepper Grass (Idaho Department of Fish and Game)
9. Habitat for Sage Grouse (Bureau of Land Management)
10. Areas of Critical Environmental Concern (Bureau of Land Management)
11. Historical Trails and Buildings (Idaho State Historical Society)
12. Impaired Streams and Stream Monitoring Locations (Idaho Department of Environmental Quality)
13. Open Space and Grazing Lands (COMPASS; Bureau of Land Management)
14. Parks and Schools
15. Prime Farmland (irrigated, currently undeveloped)
16. Ridge-to-Rivers Trails
17. Environmental Wetlands (rivers, lakes and waterways)
Table 8-2: Matrix of Environmental and Resource Agency Consultation

<table>
<thead>
<tr>
<th>Agency</th>
<th>Air Quality</th>
<th>Water Quality</th>
<th>Flood-plains</th>
<th>Wetlands</th>
<th>Hazardous Waste</th>
<th>Contaminated Sites</th>
<th>Wildlife, Fish, Habitat</th>
<th>Agriculture Farmland</th>
<th>Noise</th>
<th>Historic, Cult, Arch.</th>
<th>Social & Econ. Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho Transportation Department</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho Department of Fish and Game</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho Department of Environmental Quality</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho Department of Water Resources</td>
<td></td>
</tr>
<tr>
<td>Idaho State Historical Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Idaho Office of Species Conservation</td>
<td></td>
</tr>
<tr>
<td>Idaho Department of Lands</td>
<td></td>
</tr>
<tr>
<td>Idaho Department of Agriculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Soil Conservation Commission</td>
<td></td>
</tr>
<tr>
<td>Local Highway Technical Assistance Council</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada County Development Services</td>
<td></td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td></td>
</tr>
<tr>
<td>U.S. Bureau of Reclamation</td>
<td></td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service</td>
<td></td>
</tr>
<tr>
<td>U.S. Forest Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U.S. Bureau of Land Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>U.S.D.A. Natural Resources Conservation Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
CHAPTER 9

MAKING TRANSPORTATION SECURE

Need for Consideration

Transportation security is a requirement under the 2005 Safe, Accountable, Flexible, and Efficient Transportation Equity Act – a Legacy for Users (SAFETEA-LU). Planning processes are encouraged “….to the extent practicable” to be coordinated with security initiatives undertaken by the state, transit operators, and localities. Long-range transportation plans should include a security element that incorporates or summarizes the priorities, goals, or projects set forth in other transit safety and security planning and review processes, plans, and program.1

There are two broad areas to be addressed in transportation security:

• Roadway networks and facilities.
• Transit networks and facilities.

Roadway Networks and Facilities

Interstate 84 provides primary access to and from the Treasure Valley. I-84 is a main transportation route for the trucking industry in the northwestern U.S. It also provides a connection from the Treasure Valley eastward to Salt Lake City and beyond. State Highway 44 and U.S. 20/26 are east-west routes connecting I-84 in Canyon County to downtown Boise in Ada County. State Highways 16 and 55 provide access to Ada County from the north while State Highways 21 and 69 are gateways to the east and south, respectively. Major Ada County roadways tend to be relatively level and well-maintained with adequate width.

Several highways intersect Canyon County including U.S. 95 and 20/26; State Highways 44, 45, 55, and 19. U.S. 20/26 is the major access road for the communities of Parma and Notus. U.S. 95, along with State Highways 55 and 19, provide the main connections to Greenleaf and Wilder, while Melba is served by State Highway 45.

Six potential threats related to the Treasure Valley roadway networks have been identified: snow, fires, dams, earthquakes, landslides, and floods.

1 SAFETEA-LU (§306(a) & (h) and 322(b))
Snow

Southwest Idaho is prone to occasional extreme cold temperatures and severe snow storms. Winter storms can slicken roads and reduce visibility, causing transportation accidents. Blowing snow can form large drifts and block important transportation links. Techniques such as installing snow fencing and maintaining snow removal equipment can help ensure movement of traffic along major corridors such as I-84.

Fires

Wildland fires can impede or prevent traffic flow throughout the transportation infrastructure. Large fuel accumulations occur adjacent to some rights-of-way, particularly in the Boise Foothills. Roadway and railway corridors can be cleared of wildland fuels by employing methods such as mowing, spraying, grazing, and harvesting. ITD contracts for mowing transportation links throughout the six-county region. However, the timing and frequency of mowing along the I-84 corridor have been insufficient to minimize the risk of fire hazards. ITD is currently working with the Bureau of Land Management to explore ways to create a firebreak along I-84 from Boise to Glenns Ferry.

Dams

The Idaho Department of Water Resources (IDWR) is charged with administering dam safety throughout the state for dams not under the jurisdiction of the U.S. Bureau of Reclamation. They regulate impoundment structures 10 feet tall and higher or those storing more than 50 acre feet of water. IDWR inspects each dam at a minimum of once every two years. Every dam inspected is given a risk classification to grade potential downstream losses and damages that could occur from dam failure during typical flow conditions. Black’s Creek, Lucky Peak, Arrowrock, and Anderson Ranch dams are all classified as “high risk” by IDWR. Ninety-one of the 567 dams inspected by IDWR are currently listed as high risk.

Earthquakes

Idaho is ranked fifth in the nation for potential earthquake hazards behind California, Nevada, Utah, and Alaska (Figure 9-1). Ground movement during an earthquake can collapse buildings and bridges, blocking travel corridors. The increased congestion could prevent timely emergency response. Ada County is bordered by two fault zones that show evidence of activity during the current geologic time period.

However, most structures in the region were constructed without regard for seismic hazards. Historical records, dating back to 1872, show that Boise has not experienced any damaging earthquakes.

2 The following dams relevant to this plan are under the Bureau of Reclamation: Anderson Ranch, Arrowrock, Boise River Diversion, Deer Flat, and Hubbard.
Downtown Boise can expect some older multistory buildings to suffer damage or collapse in the event of a moderate earthquake. The structural elements in historic buildings can be reinforced to decrease the potential hazard they pose during an earthquake. All of the cities within Ada County have adopted the International Building Code. In 2002 the International Building Code incorporated the 1991 Uniform Building Code, which sets construction standards for different areas in the nation based on potential seismic activity. Enforcement of proper land-use and development policies can also reduce the hazards associated with earthquakes.

Landslides

Large scale landslides in Ada and Canyon Counties are unlikely due to the relative flatness of the region. However, steep terrain in the Boise Foothills puts this area at high risk for landslides (Figure 9-2). Population growth and planned communities in the Boise Foothills increases the risk of transportation routes being blocked due to soil slides. Residents or county representatives living in landslide prone areas should develop evacuation plans for travel routes. Communities should establish landslide and bank failure locations for use in transportation planning. Proper land-use planning is one of the most effective and economical tools available to avoid hazards caused by landslides. Land-use zoning districts should discourage or restrict development in steep, unstable areas.

Floods

The Federal Emergency Management Agency identified 319 general miles of road within Ada County flood zones. They also identified 11 miles of primary and secondary access roads in flood zones along with 6.1 miles of railroad tracks. There are 19 motor vehicle bridges crossing the Boise River in Ada County and most have been built to accommodate 100-year flood events. The majority of primary access routes into the Treasure Valley are bordered by moderately sloping or flat rangelands. However, a 100-year flood event would affect a large portion of downtown Boise as well as many roads and bridges.

A detour around I-184 through downtown Boise would be problematic in the event of a flood due to the high volume of traffic in and around the area. Alternate routes would be available, although additional time would be required to reach emergency locations. Ada and Canyon Counties could engineer mechanical processes to clean debris from the Boise River at critical river crossings.

General Findings

There are two general themes in the documents reviewed:

- Transportation facilities are subject to damage or destruction from flooding or earthquake threats. The principal transportation facilities threatened would be bridges crossing the Boise and/or Snake Rivers due to debris piling up on the upstream side of the structures.
- Transportation facilities are critical elements in evacuations. These can be broken into two elements:
 - Roadways – Used for general evacuations in the event of flooding or fires.
 - Transit – Used for populations unable to drive in the event of an evacuation. Security plans specifically note the need to involve Valley Regional Transit and other owners of buses, especially those with lift equipment.

The following map (Figure 9-3) depicts the 100-year flood zones in Ada and Canyon Counties. While the multiple bridge crossings represent a potential high risk to structures in the event of a flood, they also provide multiple routes for evacuation in the event of a natural or man-made disaster.

4 For a list of documents reviewed in this process, please refer to Appendix D, Transportation Related References from Security Plans.
Note that the major flood risk represented by the Boise River still allows a very high degree of access north and south for residents on either side. There is a slight risk of a more catastrophic flood event should one or more the three major Boise River dams upstream from the urban area fail:

- Lucky Peak. Completed in 1955 with a capacity of 306,000 acre feet at elevation 3,060 feet\(^5\)
- Arrowrock. Completed in 1915 with a capacity of 272,200 acre feet at elevation 3,216 feet.\(^6\)
- Anderson Ranch. Completed in 1950 with a capacity of 413,100 acre feet at elevation 4,196 feet.

While not above the major urban areas, the three Deer Flat dams are also in the planning area. These dams comprise the Lake Lowell system and were completed in 1908 with a capacity of 173,100 acre feet at elevation 2,539 feet.

The transportation system, with its extensive grid, also provides multiple routes for evacuation in the event of other, more localized disasters such as wildfires or hazardous material spills. Landslides and wildfires are of primary concern in the foothills area north of the developed portion of the region. Should more growth occur in these areas, some attention should be given to evacuation routes.

Future Actions

The identification of critical bridges in the region using the criteria identified in the *National Needs Assessment for Ensuring Transportation Infrastructure Security*\(^7\) will be a project in collaboration with state and local agencies. The criteria for critical bridges include:

- **Casualty Risk** – Number of users exposed as reflected in:
 - The main span size of the bridge, that is, over 50m/165 feet, and
 - Traffic over 40,000 average daily traffic (ADT).

- **Economic Disruption** – Disruption of the national economy as indicated by:
 - Bridges located on the Interstate Highway System plus the Department of Defense-defined Strategic Highway Network (STRAHNET),
 - Traffic over 40,000 average daily traffic,
 - Main span length over 50 meters/165 feet,
 - Double deck bridges, and
 - Nearest detour distance more than 5 km/3 miles for bridges with less than 60,000 average daily traffic.

- **Military Support Function:**
 - Bridges on STRAHNET and/or on the Military Traffic Management Command (MTMC)-defined “Power Projection Routes” serving forts within 400 miles of port, and
 - Main span over 50m/165 feet.

\(^6\) Source of Arrowrock and Anderson Ranch dam data is the US Bureau of Reclamation at http://www.usbr.gov/projects/Project.jsp?proj_Name=Boise Project

Communities in Motion

- Emergency Relief Function:
 - Bridges in 78 major metropolitan areas, and
 - On upper level system, i.e., freeways, expressways, and principal arterials.

- National Recognition:
 - Bridges with symbolic importance.

- Collateral Damage Exposure:
 - Bridges carrying other utilities, e.g., pipelines and major power and communications lines.

Transit Networks and Facilities

Transit issues germane to security fall into three broad categories:

- Threats to transit passengers and facilities.
- Disruption to services in the event of a natural or human-caused catastrophe.
- Provision of evacuation services, especially for low-income persons and persons with disabilities.

Threats to Transit Passengers and Facilities

There have been many well publicized attacks involving public transportation over the past decade. The terrorist attacks on the World Trade Center in New York City (2001), the Madrid train bombing (2004), and the London Underground and bus bombings (2005) were some of the better known events. In New York City, the subway system was not the primary target, but transit services were disrupted by the collapse of the towers.

While the Ada and Canyon region is much smaller and its transit services much less in terms of magnitude, concern about security is still legitimate. By 2011 or 2012 a major transit center will be under construction in downtown Boise. Design of the structure (a concept of the transit center is shown in Figure 9-4) may incorporate visual surveillance technology, communications, and space for a police substation. A final decision as to the security components of the transit center has yet to be made.8

The issue of security is part of a COMPASS publication issued in September 2009, *Technology in Mobility Management*.9 Specific security related features discussed in this report include:

8 Consideration of surveillance technology was part of the multimodal preliminary design concepts conducted by URS under contract to Valley Regional Transit during 2008 and 2009.

Although MPOs have a strong history of influencing regional transportation operations, they face challenges in bridging regional coordination between emergency response and transportation stakeholders. MPOs may want to be involved, but they sometimes lack the authority to lead emergency response efforts. Often a clear policy role beyond transportation planning and improvement does not exist.

COMPASS commissioned an update to the Intelligent Transportation System architecture plan to include the communications systems between vehicles, dispatch, and emergency services (see Chapter 7 for more information on Intelligent Transportation Systems).

Disruption to Services

The type of disruption experienced by New York City or Madrid is less of an issue in the surface bus system that exists in the region today. The absence of a rail transit corridor, complete with tunnels, bridges, and main stations reduces the problems that would arise out of natural or human-caused event. The transit center described above, while concentrating vehicles at a specific location, is not essential to the provision of service. In the event of an incident, buses could use other streets for transferring passengers.

There are several bridges over which transit routes operate. As noted above, the absence of a single bridge would in most cases require a detour and some delay.

Provision of Evacuation Services

A major element often overlooked in evacuation plans is the need to evacuate large numbers of people who lack a car or cannot drive. In some cases, persons may be unable to be transported in vehicles without some lift or ramp to access the vehicle.

- Global positioning system (GPS) tracking on buses to allow automated vehicle location. Automated vehicle location allows transit dispatchers to know the exact locations of all vehicles. While principally a benefit in providing real-time information to transit dispatcher and transit customers, knowing the exact location of a bus in an emergency is critical. (Implemented at time of this plan.)
- Radio system on buses, voice, and data capabilities. (Implemented at time of this plan.)
- Emergency/panic button and remote surveillance.
- Surveillance – on board cameras. (Implemented at time of this plan.)
- Consideration of transit participation in the Interagency Regional Operations Center (IROC). IROC is a concept of collocating and/or coordinating emergency services, traffic operations, and transit operations to improve response to emergencies, routine traffic congestion, and other issues. No decision has been made as to participation in the IROC concept, and the matter is on hold.

Although MPOs have a strong history of influencing regional transportation operations, they face challenges in bridging regional coordination between emergency response and transportation stakeholders. MPOs may want to be involved, but they sometimes lack the authority to lead emergency response efforts. Often a clear policy role beyond transportation planning and improvement does not exist.

Ensuring Workforce Mobility In Emergencies
There are some areas in which it may be appropriate for COMPASS to participate. The following strategies were taken from a recent report, *Ensuring Workforce Mobility in Emergencies*, by ICF International. ¹⁰

- Working with local agencies to collect regional geographic data in a common format and offer a regional repository of synthesized geographic data for emergency planning, training, and response.
- Inventory public and private transit-related resources to share, such as vehicles available for use, staging areas, and technology.

Both of these are underway at COMPASS through the joint Mobility Management projects that are collecting information on locations of persons with disabilities (nursing homes, group homes, training centers, etc.) and transportation services. COMPASS is also working with state and local agencies to compile consistent geographical information system (GIS) data such as streets, bridges (including weight restrictions), schools, hospitals, etc.

See Appendix D, Transportation Related References from Security Plans, for additional information related to security issues in transportation.

CHAPTER 10

MAKING TRANSPORTATION SAFER

Background

The 2005 federal Safe, Accountable, Flexible, and Efficient Transportation Equity Act—A Legacy for Users (SAFETEA-LU) legislation included safety as one planning factor (23 CFR 450.306). Safety needs to be integrated into all phases of transportation planning, design, construction, maintenance, and operation.

In addition, SAFETEA-LU established a core safety program called the Highway Safety Improvement Program (23 U.S.C. 148), which introduced a mandate for Strategic Highway Safety Plans (SHSPs) that are collaborative, comprehensive, and based on accurate and timely safety data. An SHSP is a statewide coordinated safety plan that provides a comprehensive framework for reducing highway fatalities and serious injuries on all public roads. The SHSP strategically establishes statewide goals, objectives, and key emphasis areas developed in consultation with federal, state, local, and private sector safety stakeholders, as well as operators of other modes. Metropolitan and statewide transportation planners must be an integral part of the SHSP process. The goals, objectives, and strategies of the SHSP should be integrated into statewide and metropolitan transportation plans as well as Transportation Improvement Programs to place safety on par with other planning factors, particularly in choosing or evaluating new and continuing projects and initiatives.

23 CFR 450.306 (h) states that the metropolitan transportation planning process should be consistent with the SHSP, and other transit safety and security planning and review processes, plans, and programs as appropriate.

23 CFR 450.322 (h) encourages the inclusion of a safety element in the metropolitan transportation plan [regional long-range transportation plan] that incorporates or summarizes the priorities, goals, countermeasures, or projects for the planning area contained in the SHSP, as well as (as appropriate) emergency relief and disaster preparedness plans and strategies and policies that support homeland security (as appropriate) and safeguard the personal security of all motorized and non-motorized users.

State Highway Safety Plan

In 2007, the state of Idaho approved its SHSP. Titled Toward Zero Deaths: A Partnership to Develop Idaho’s Comprehensive Highway Safety Plan, the SHSP was a culmination of a collaborative process that involved state and local governments, tribal governments, various associations, the private sector, and other parties. 1

A draft update of the SHSP, dated June 8, 2010, is in process. Data from this draft will be identified as the 2010 SHSP. The 2010 SHSP includes data from 2004-2008. Note that Ada and Canyon Counties’ data were extracted from the Idaho Transportation Department (ITD)’s Web Crash Analysis Reporting System (WEBCARS). Data for 2009 may be incomplete.

The Governor’s Highway Safety Summit, “Toward Zero Deaths,” was held in October 2005. Idaho stakeholders were invited to participate and answer the challenge of reducing highway-related fatalities and life-altering injuries. These stakeholders include those involved in planning, designing, constructing, operating, and maintaining the roadway infrastructure (engineering), modifying road user behavior and preventing injury (education and enforcement), and also providing post-crash assistance (emergency medical services). Challenges and strategies were solicited from all participants. From their input, ten data-driven emphasis areas were identified to focus immediate efforts. These emphasis areas were:

1. Aggressive Driving
2. Commercial Vehicles
3. Emergency Medical Services
4. Highway-Railroad Grade Crossings
5. Impaired Drivers
6. Mature Drivers
7. Occupant Protection
8. Road Related Crashes
9. Vulnerable Users
10. Young Drivers

The 2010 update did not address rail crossings. The 2007 SHSP found that national and state fatality rates have declined since 1996. The national fatality rates (number per 100 million vehicle miles of travel or 100MVT) went from 1.69 deaths per 100MVT to 1.46. The corresponding state traffic fatality rate went from 1.84 deaths per 100MVT to 1.52 deaths per 100MVT (2010 SHSP). Idaho rates remained significantly higher than national rates and for two years, 2000 and 2003, rates increased. Higher percentages of travel on rural, high speed roadways could contribute to the higher rates.

The following extracts from the SHSP focus on those elements germane to the functions and roles of metropolitan transportation planning and programming. The SHSP includes a broad range of issues and strategies, many focusing on legislation, improved enforcement, public education, and targeted training (e.g., motorcycle operations). These strategies are certainly important in improving transportation safety, but their implementation is addressed under other processes than metropolitan system planning and investment.
Aggressive Driving

Aggressive driving behaviors are defined as:

- Failure to yield the right of way
- Following too close
- Disregarding a stop sign
- Disregarding a traffic signal
- Exceeded the posted speed limit
- Driving too fast for conditions.

Aggressive driving collisions are those where a law enforcement officer indicates that at least one aggressive driving behavior was a contributing factor. The SHSP includes the following as contributing to aggressive driving behavior:

- Increasing vehicle miles of travel, traffic congestion, and travel delays. These result in frustration and impatience, which are reflected in driver behavior.
- Age of drivers. Drivers, ages 19 and younger, are more than four times as likely to be involved in an aggressive driving collision as all other drivers.

The first cause would indicate that congested roads during peak hour would be more likely to experience a higher rate of aggressive driving and aggressive driving related crashes.

The SHSP noted a variety of challenges in addressing aggressive driving. Political and cultural issues (lack of respect, inadequate funding for enforcement) contribute to the issue. Two areas more germane to Communities in Motion are:

- Technology – Funding/implementation of existing technology
- Systems (traffic flow) – Congestion

Implemented Strategies

- A three-month intensive law enforcement campaign, in conjunction with other youth programs, targeting aggressive driving.
- A multi-media ad campaign targeting aggressive drivers to support the law enforcement campaign and to raise awareness.
- Year-long aggressive driving grants with agencies in area that experience a large number of aggressive driving-related crashes.
- Distribution of public awareness materials to educate the public regarding aggressive driving behaviors.
- Establishment of Selective Traffic Enforcement Program (STEP) Teams.
- Use of performance measures to identify focus areas.
Potential New Strategies

- **Technology**
 - Increase number of traffic cameras
 - Increase number of dynamic message signs
 - Continue implementation of 511 system
 - Improvements to Web site with easy link
- **Education – School programs** (public service announcements, check 511, Web)
- **Political** – Pass primary seat belt law (would make Idaho eligible for additional safety funds)
- **Systems (traffic flow)**
 - High occupancy vehicle lanes, roundabouts
 - Predictable delay
 - Bypass
- **People**
 - Encourage reporting of inappropriate driving
 - Provide seat belt education/demos, such as “Seat Belt Barbie”; work to change attitudes of youth

Implementation through *Communities in Motion*

The primary link with *Communities in Motion* is in the following areas:

- **Planning and programming improvements to the intelligent transportation system (ITS) in collaboration with ITD, the Ada County Highway District (ACHD) and other transportation agencies. More information is provided in Chapter 7, which addresses operations and management techniques.**

 Installation of cameras providing real-time information on traffic flows tied to a number of reader boards has been a major element of ITS during the past decade. ITD and ACHD have tied these cameras into web sites at http://hb.511.idaho.gov/main.jsf and http://www.achdidaho.org/ATIS/Default.aspx.

- **Developing transportation system management approaches, including improved access management and intersection design. Corridor studies developed for State Highway 44 and US 20/26 both include access management plans that would not only improve travel flow but reduce accident rates by eliminating hazardous left turns at many locations.**

 COMPASS also sponsored an evaluation of “innovative” intersection designs in 2008. A number of options were considered, including:

Continuous Flow Intersections
Parallel Flow Intersections
Town Center Intersections
Median U-Turn (“Michigan Left Turn”)
Quadrant Roadway Intersections
Jug handle/Mini-Cloverleaf Intersections
Roundabouts

This study found that these types of intersections provided greater safety by reducing the number of conflict points, spreading them out, restricting and/or rerouting movements, or reducing the complexity of traffic signal phasing.

For example, when a roundabout is used (Figure 10-1), accident rates may not decline, but the severity of accidents is decreased by reducing the speed and force of collisions. The opportunity for head-on collisions is nearly eliminated. The Insurance Institute for Highway Safety sponsored research on 29 roundabouts and found “… a 39 percent overall decrease in crashes and a 76 percent decrease in injury-producing crashes. Collisions involving fatal or incapacitating injuries fell as much as 90 percent.” 4 While concerns about pedestrian safety remain, properly design roundabouts such as that depicted above contribute to pedestrian safety by reduced speed and the provision of refuge islands.

Congested corridors and aggressive driving could be an issue in the region. An analysis of traffic accidents on one stretch of I-84 between Garrity Boulevard and Meridian Road (Figure 10-2) appears to demonstrate that a much higher percentage of accidents occur during peak hours.5

A combination of congested roads with much less distance between vehicles and aggressive driving shows that the percentages of accidents in the morning and evening peak are double the peak traffic volume percentages. The most common accident is a rear end, with 80% of the aggressive driving citations. Aggressive driving accidents constituted 61% of the 809 accidents occurring on this stretch of highway.

5 Crash data shown in this chapter were extracted from the Idaho Transportation Data website Web Crash Analysis Reporting System (WEBCARS) at http://apps.itd.idaho.gov/apps/webcars/Default2.aspx.
Commercial Vehicles

Commercial motor vehicles are defined as buses, truck tractors, truck-trailer combinations, trucks with more than two axles, trucks with more than two tires per axle, or trucks exceeding 8,000 pounds gross vehicle weight that are primarily used for the transportation of property.

The 2010 SHSP found that in 2008, 36 people died in collisions with commercial motor vehicles, representing 16 percent of all motor vehicle fatalities in Idaho. Of persons killed in collisions with commercial motor vehicles, 61 percent were occupants of passenger cars, vans, sport utility vehicles, and pickup trucks.

In 2008, 56 percent of all collisions and 73 percent of all fatal collisions involving commercial motor vehicles occurred on rural roadways. Rural roadways are defined as any roadway located outside the city limits of cities with a population of 5,000 or more. The majority of fatal commercial motor vehicle collisions (55 percent) occurred on U.S. and state highways, although the majority of total accidents involving commercial vehicles occurred on local roadways. These statistics point to the relationship of higher speeds in rural areas, particularly on state highways in fatal accidents.

Challenges

- Enforcement - safety violations, rumble strips enable driver inattention, lack of enforcement by local officers, drivers using drugs and alcohol. Too little overweight enforcement, driving too fast, trucks pulling triple trailers going too fast, drivers can’t see triple trailer.

- Education/Attitudes - fatigued drivers, heavy vehicles hitting lighter ones, safety devices only required on vehicles weighting more than 6500 lbs, trucks not yielding to traffic entering the interstate.

- Improved Laws - uncovered loads, no chain-up law in Idaho in bad weather, exemptions: intrastate operations like logging, agriculture, and sand and gravel, unsafe passing.

Recent Implemented Strategies

- Established partnerships to address low seat belt usage among commercial motor vehicle (CMV) drivers.

- Distributed informational brochure regarding positive effects of CMV seat belt usage.

- Used Commercial Vehicle Information Systems and networks to improve quality and timeliness of enforcement of CMV laws.

- Used a proactive approach of education and enforcement for passenger carriers.

- Targeted identified commercial vehicle high crash corridors and provided funding for partner agencies to enhance education and enforcement of hazardous moving traffic violations by CMVs.

- Improved accuracy and timely submission of crash reports.
Potential New Strategies

- Improve laws and enforcement.
- Increase the number of Commercial Vehicle Safety Officers.
- Get (or gain) legislative and Idaho State Police buy-in to increase the number of full time employees.
- Use the available federal funding currently left on the table.
- Get unsafe vehicles off the road by reducing exemptions from laws and safety standards for intrastate vehicles.
- Legalize sobriety checkpoints, mandate judicial support of laws by instituting mandatory penalties for impaired driving, provide a driving under the influence (DUI)/drug court in every Idaho county with supervised DUI probation.
- Implement automated enforcement of aggressive driving infractions, educate non-CMV drivers on aggressive driving around CMVs and its impact on fatality numbers in Idaho.

Implementation through *Communities in Motion*

Only two areas noted were germane to the physical transportation system: rumble strips to enable driver attention and unsafe passing (added passing lanes). While not specifically noted in the SHSP, identification of and improvements to high truck traffic routes and facilities would also be a strategy. *Communities in Motion* identifies a number of corridors, especially I-84, in need of major widening.

Between 2000 and 2009, there were more than 5,064 accidents involving commercial vehicles within Ada and Canyon Counties (Figure 10-3). The number of commercial vehicle accidents peaked in 2005 and has declined since. A sharp drop in the number of accidents between 2007 and 2009 is likely related to the economic downturn. These accidents resulted in 61 fatalities and 2,035 injuries between 2000 and 2009.
Not surprisingly, I-84 accounted for 856 of the accidents, 17 fatalities, and 402 injuries. This does not include overpass or interchange ramp accidents. Other high commercial vehicle accident corridors include:

- Eagle Road – 242 accidents, 1 fatality, 117 injuries
- Franklin Road – 116 accidents, 0 fatalities, 52 injuries
- Chinden Boulevard (US 20/26) – 140 accidents, 1 fatality, 48 injuries
- Cole Road – 125 accidents, 0 fatalities, 60 injuries
- Fairview Avenue/Cherry Lane – 113 accidents, 0 fatalities, 53 injuries
- Broadway Avenue – 85 accidents, 0 fatalities, 16 injuries
- Karcher Road – 69 accidents, 0 fatalities, 23 injuries

Emergency Medical Services

Emergency medical service (EMS) is a coordinated system to respond to injured drivers, passengers, and pedestrians, members of the traveling public experiencing a medical emergency, and the public at large for injuries and medical emergencies.

Challenges

- Lack of interagency cooperation: turf wars/jurisdiction
- Inadequate infrastructure – including equipment and communications
- Ineffective response time – in part due to congested roads and/or poor communications systems
- Education
- Politics
- Technology – communications, lack of coordinated radio systems, data analysis
- Personnel
- Money – for all the above

Samples of Recent Implemented Strategies

- Statewide implementation of the Next Generation Patient Care Report and Trauma Registry.
- Initiation of the Web-based Electronic Resource Tracking system (WERT).
- Initiation of the Interagency Resource Operations Center (IROC) study. This is a multi-agency planning process with ITD and ACHD about the next generation communications center that will exploit contemporary technology in the avoidance and detection of motor vehicle related crashes and expedite deployment of resources to highway and main arterial incidents.
- Newly promulgated rules for EMS providers’ scope of practice.
- An overhaul practical exam process.
• The development of a Statewide Mass Casualty Incident (MCI) plan.
• The development of a Critical Access Hospital (CAH) Regional Integration Plan.

Potential New Strategies

• Response Time - intergovernmental agreement among jurisdictions for cooperative effort to improve rural addressing through GIS for dispatch and support efforts to achieve statewide interoperability.
• Infrastructure - seek legislation for more funding, provide emergency response agencies with latest technology, plan to coordinate equipment between state and local responders, and pursue data linkages.
• Interagency Cooperation - incident control strategies system training broadened, regional multi-jurisdictional meetings to develop cooperation, post-incident review

Implementation through Communities in Motion

One strategy specifically noted was the IROC, which would coordinate communications and operations among a number of local and state agencies. The IROC would address many of the issues noted in the SHSP, such as improved communications, coordination, and general technology. The IROC was estimated to cost $38 million (January 2008) based on assumptions of three major entities collocating in IROC: ITD Mobility Services, ACHD Congestion Management section, and the Idaho Emergency Management Services Bureau and Communications Center. The IROC study considered a number of funding mechanisms, including federal grants under Federal Highway Administration, Federal Transit Administration, and Homeland Security. The IROC is addressed in the ITS portion of Communities in Motion. No decision has been made on IROC at the time of this plan. The concept is on hold.

Highway-Rail Grade Crossings

The SHSP found that Idaho has approximately 1,665 miles of railroad line and 1,439 public highway-railroad grade crossings. Of these crossings, 1,260 or 88 percent, are on the local system.

Challenges

• Enforcement - lack of enforcement for vehicles running stop signs and electric signals, weak penalties for driving around stop arms, no automated enforcement, trespassing on tracks, lack of time and human resources to monitor tracks.
• Education - areas with whistle bans and quiet zones, inattention, ignoring warning devices, drivers become complacent because of low number of trains at some intersections, not enough use of Operation Lifesaver’s look, listen, and live program.

Engineering - multiple tracks, middle of train is hard to see at night (lack of reflective materials on rail cars), crossings are unsafe for motorcycles, train stopping distance, lack of signalized crossings (people don’t pay attention to stop signs at crossings), limited funds for signalization and crossing upgrades.

Specific Strategies Relevant to Metropolitan Planning Organizations (MPOs)

- Develop comprehensive engineering grade crossing reviews, including corridor-based studies.
- Upgrade crossings marked with only passive crossbuck warning signs with Ida Shields.
- Initiate a light emitting diode (LED) signal upgrade program.
- Begin experimental use of polymer concrete bridge panel and edge beam crossing surface with flashing in-roadway warning lights.
- Begin experimental use of directional Wayside Horn warning system.
- Install crossing gates, signs, and signals at crossings.
- Upgrade crossing signal equipment circuitry to constant warning time.

Implementation through Communities in Motion

Within Ada and Canyon Counties, there are 161 railroad crossings. The railroad tracks are owned by the Union Pacific Railroad (UP), which has leased track rights on the Boise Cutoff and other spur lines to Watco Transportation Services, Inc. Union Pacific maintains control over the UP mainline track that enters the region from the northwest and exits to the southeast for a distance of 67 miles. The main track is traveled by 35+ trains per day. Maximum track speeds vary up to 79 mph.

The spur lines consist of three elements:

- The Boise Cutoff consists of 44 miles of track from the main line yard in Nampa to its reconnection with the UP main south of Boise. The City of Boise purchased approximately 18 miles of the Boise Cutoff starting approximately 1 mile north of the Cutoff/Main junction south of Boise. This track is traveled by 1-2 trains per day, generally consisting of less than 15 cars per train. These are shuttles delivering or picking up local freight. Operating speeds run from 20 to 59 mph.7
- The Wilder spur consists of 11.1 miles of track from the main line in north Caldwell to its terminus in Wilder. The majority of traffic is generated by major agricultural industries near Caldwell.
- The Middleton spur consists of 6.6 miles of track from the main line north of Nampa to a terminus north of US 20/26.

See Figure 10-4 for locations of the lines and the crossing types and locations. Figure 10-5 shows crossing-related accident locations between 2000 and 2009.

The number of rail crossings in Ada and Canyon Counties are show in Table 10-1 and described below:

- Separated – rail line passes over or under crossing roadway.
- Gated –actuated by an on-coming train drop across the approach road. Often combined with signals.

7 A short spur runs from the Boise Cutoff near Curtis Road northeast to Orchard Street for a distance of 1.1 miles. No crossing data were available and no accidents were reported on this spur.
• Signaled – lights on the side of the road or on horizontal bars across the road warn drivers of trains.
• Signed – combination of crossbuck and stop signs.

No Controls/Not Required – not warranted due to extremely low volumes. Typically these are private roads.

Growth in many areas will put additional pressure on existing crossings. This is particularly true in southern Ada County, where numerous developments have been approved south of the UP main track. No grade separated crossings exist in this area. The City of Kuna has requested a grade separation in the vicinity of Linder and/or Meridian Road (State Highway 69). The crossing is shown as unfunded in this plan.

Additional crossing safety issues could arise with consideration of high capacity transit services along rail corridors, particularly the Boise Cutoff. Assuming that a future service could include light or heavy rail vehicles, these crossings would need to be gated, preferably with a four-gate system, to reduce the chance of a train-vehicle collision.

Finally, there is the integration of rail crossings with ITS. According to the Federal Rail Administration website, “The ITS Architecture provides for the integration of the railroad operating systems with the traffic management systems… The result is a system that would have the capability for getting advance warning of approaching trains through interconnected information systems that link the motorist to the traffic management and rail operations systems. It also allows for the capability of warning the locomotive engineer of obstacles or trapped vehicles at grade crossings, and potentially for trespassers along the right-of-way.” Since a large train with 100+ cars can take more than a mile to stop, advance warning systems could reduce collisions.

Table 10-1: Rail Crossings in Ada and Canyon Counties

<table>
<thead>
<tr>
<th>Type of Crossing</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separated</td>
<td>19</td>
</tr>
<tr>
<td>Gated</td>
<td>28</td>
</tr>
<tr>
<td>Signaled</td>
<td>21</td>
</tr>
<tr>
<td>Signed</td>
<td>65</td>
</tr>
<tr>
<td>No Controls/Not Required</td>
<td>23</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
</tr>
</tbody>
</table>

In 2000 and 2009, there were 213 rail/roadway accidents in Idaho. These involved 308 people (drivers, passengers, and rail personnel). There were 26 fatalities and 138 injuries. Of this total, there were 37 rail/roadway accidents in Ada and Canyon Counties, with 4 fatalities and 15 injuries. Salient facts about these regional accidents include:

- Three-quarters occurred during daylight.
- More than 90% were on dry pavement.
- More than half occurred at crossings with only signs, while another quarter at crossings with gates and signals. Devices were all functioning.
- Principal contributing circumstances were none (33%), inattention (24%), and failure to yield (19%).
- Six of the accidents involved tractor-trailers. Nine involved pickups or vans. The rest involved passenger cars. This higher than expected involvement with tractor-trailer rigs continues at the state level.
- Nine accidents occurred in 2005, with six of these in Canyon County. Across the 10 year period, 2/3 of the rail accidents involved Canyon County rail crossings, although 2/3 of the population resides in Ada County. However, the bulk of the rail mileage and crossings are in Canyon County. (See Figure 10-4)
- One rural crossing on a private road was involved in two accidents over two years. One resulted in a fatality and an injury, which the other resulted in an injury.

Accidents on the UP main line running from Parma through Caldwell, Nampa, and Kuna are more prevalent and serious due to the number of trains per day (35) and the speed (50-70 mph). In addition, the length of the mainline trains is much greater than trains on the Wilder, Middleton, and Boise Cutoff lines. Figure 10-5 depicts the location of accidents.

Implementation through Communities in Motion:
The continuation of accidents at gated crossings indicates that education and enforcement are needed, regardless of the crossing controls. Violations typically involve a driver steering around the gates. This can be deterred by “four gate” systems in which gates bar both the approach and departure directions. The approach gate drops first, followed by the departure gate after a few seconds has passed to allow traffic to exit the rail corridor. Concrete islands separate the direction of the lanes to prevent drivers from steering around the gates.

In some cases, the low volume of train traffic could be a danger in that drivers grow accustomed to no trains using the crossing. With inattention representing 24% of the contributing cause of the accidents and the prevalence of signed crossings, drivers may come to expect that no trains ever use the track. Installing more active systems, including signals and gates, on public crossings should be considered. The width of some high-volume streets makes gate technology difficult or very expensive to implement. The crossings at Milwaukee Street in Boise and on State Highway 55 (Eagle Road) in Meridian are examples of this condition.
Figure 10-5: Rail Crossing Accident Sites
Impaired Drivers

An impaired driving collision is one in which alcohol or drugs may have contributed to the collision. In 2008, 96 fatalities resulted from impaired driving collisions. This represents 41 percent of all fatalities. Only 14 (or 18 percent) of the 76 passenger vehicle occupants killed in impaired driving collisions were wearing a seat belt. Nearly 15 percent of impaired drivers in collisions were under the age of 21 in 2008, even though they are too young to legally purchase alcohol. Impaired driving collisions cost Idahoans nearly $725 million in 2008. This represents 28 percent of the total economic cost of collisions.

Implemented Strategies (Not All Listed from SHSP)

Most of the strategies for impaired driving addressed education, public awareness, and enforcement. Examples included:

- Conducting intensive law enforcement campaigns each year targeting impaired drivers.
- Developing and delivering a multi-media ad campaigns targeting impaired drivers to support the law enforcement campaigns and to raise awareness.
- Helping law enforcement agencies establish Selective Traffic Enforcement Program (STEP) Teams that target impaired driving.
- Funding the Traffic Safety Resource Prosecutor position, DUI courts, and DUI probation officers.
- Distributing public awareness materials to educate the public regarding impaired driving.
- Implementing year-long impaired driving grants with law enforcement agencies in areas that experience a large number of crashes.

![Impaired Driver Accidents](image)

Figure 10-6: Impaired Driver Accidents in Ada and Canyon Counties
Potential Strategies

- Fund additional officers.
- Streamline paperwork.
- Remove 15-minute observation period.
- MADD/other support groups make case to public for needed resources.
- Eliminate notary requirement.
- Increase use of motor vehicle inter-lock system.
- Form community coalitions to raise issues/resolutions.

The number of accidents related to impaired drivers has declined with stricter enforcement. Note that the rate per 1000 population in 2009 was half that of 2003. Whether SHSP was causal or coincidental, it is interesting to note the sharp drop since 2007. Note that part of this may relate to the economic downturn.

Implementation through Communities in Motion

Nearly all the listed existing and potential strategies address enforcement or public education. Although there are no specific measures in *Communities in Motion* related to impaired drivers, transportation system projects that improve intersection design, street lighting, and other aspects can mitigate impaired driving. Increasing public transportation options could provide alternatives to driving.

Mature Drivers

Mature drivers, drivers over the age of 65, were involved in 3,036 collisions in 2008. This represents 12 percent of the total number of collisions. Collisions involving mature drivers resulted in 13 percent of the total number of fatalities in 2008. Mature drivers are underrepresented in fatal and injury crashes. Drivers over the age of 65 represented 14 percent of licensed drivers, but represent just 8 percent of drivers in fatal and injury collisions.

National research indicates drivers and passengers over the age of 75 are more likely than younger persons to sustain injuries or death in traffic collisions due to their physical fragility. Collisions involving drivers, age 65 and older, cost Idahoans nearly $332 million dollars in 2008. This represents 13 percent of the total economic cost of collisions.

Issues

As with impaired drivers, many of the strategies to addressing issues are outside the realm of a MPO, including education and enforcement. Yet there were some issues that derive from design of transportation facilities or the limited amount of services, specifically:

- Night driving and lighting needs
- Oncoming traffic headlights
- Limited transportation alternatives
• Traffic signs being too small
• General road designs

Suggested Strategies

• Improve lighting on roadways
• Improve transportation alternatives
• Use best striping materials
• Illumination technologies laws (restrict glaring light systems)
• Improve lighting, signage, pavement markings, rumble strips (center and or shoulder)

As with other accident trends, crash incidents have declined in the region somewhat, with the accident rate per 1000 (population 65+ years old) declining (Figure 10-7). Figure 10-8 shows that the distribution of accidents by time of day is different for mature drivers (65 and older) than for the total universe of drivers involved in accidents. The “normal” distribution of accidents tracks closely with traffic counts, peaking with high demand during rush hours. For mature drivers the peaks fall between noon and 3 pm.

Figure 10-7: Mature Driver Crashes in Ada and Canyon Counties

Figure 10-8: Mature Driver Crashes by Time of Day

Implementation through *Communities in Motion*

A complete streets approach considers the needs of all users, including mature drivers. This could be relevant in terms of improve street lighting and greater attention to wayfinding signage with a focus on better street addressing and directional signs. *Communities in Motion* has a priority on seeking funds to expand transportation alternatives, with an emphasis on a local option tax that could provide operating and capital funds for public transportation, vanpools, and pedestrian and bike modes. As the number of older residents increases in the region, demand for alternatives to driving will go up.
Occupant Protection

In 2008, only 77 percent of Idahoans were using seat belts, based on seat belt survey observations. In 2008, seat belt usage varied by region around the state from a high of 88 percent in District 3 (southwestern Idaho) to a low of 60 percent in District 6 (northeastern Idaho). Only 33 percent of the individuals killed in passenger cars, pickups and vans were wearing a seat belt in 2008 (Table 10-2).

The SHSP concluded that both adults’ and children’s’ lives would be saved if seatbelt and child seat usage were increased. Challenges focused on lack of awareness (e.g., need to wear a seatbelt even with airbag protection), political and public opposition to stronger enforcement (e.g., making seat belt a primary violation). No design or planning issues were identified, although the SHSP acknowledged that a stronger enforcement law would increase federal funds available for road improvements.

Review of crash data from the ITD WEBCARS system shows that there were 231,326 people involved in vehicle crashes (not including bicycles and motorcycles) in Ada and Canyon Counties from 2000 to 2009. Of this number, 90% of the occupants were wearing seatbelts.9 Yet the fatalities among non-belted occupants were higher than for belted—meaning non-belted occupants had a fatality rate 13 times greater. For serious (incapacitating) injuries, non-belted occupants were six times more likely to be injured. Note that many of the incapacitating injuries among belted occupants might have resulted in death. Applying the fatality rate of non-belted occupants to all occupants indicates that another 1,600+ people would probably have died but for wearing seat belts.

<table>
<thead>
<tr>
<th>Table 10-2: Seat Belt Usage and Injury/Fatality Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Type</td>
</tr>
<tr>
<td>Death</td>
</tr>
<tr>
<td>Incapacitating</td>
</tr>
<tr>
<td>Non-Incapacitating</td>
</tr>
<tr>
<td>None Evident</td>
</tr>
<tr>
<td>Possible</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Implementation through *Communities in Motion*

No measures discussed in the SHSP are addressed in *Communities in Motion*, notably because the measures do not involve transportation improvements, either through capacity, design, or travel alternatives. Continued public education and enforcement are important to reduce deaths and injuries due to not using seat belts.

9 This percentage of seatbelt use is consistent with the 2009 Seat Belt Usage Survey by ITD, which found that Ada County was 94% compliant, while Canyon County was 87.7% compliant. http://itd.idaho.gov/ohs/ClickIt/Surveys/obsrd2009web.pdf
Road Related Crashes

Distracted Driving

In 2008, 6,672 collisions involved an inattentive driver. Distraction is a catch-all contributing circumstance. Collisions typically occur because at least one of the drivers was not paying attention, and according to the National Highway Safety Administration, there are no effective counter measures. Distracted driving collisions cost Idahoans almost $828 million in 2008, representing 32 percent of the total economic cost of collisions.

Challenges

Some of the challenges identified in the SHSP do intersect with MPO–related planning and programming:

- Political – Laws about doing distracting things while driving
- Political – Long commutes
- Political – Planning and zoning policy
- Political – Lack of sustainable transportation systems
- Systems – Lack of funding for roadside safety improvements (rumble strips, clear zones, shoulders, recovery)
- Systems – Lack of a convenient public transportation system
- Technology – Too much technology – CDs, cell phones, DVDs/VCRs, iPods
- Technology – Lack of advancements in highway technology

Relevant Strategies

- Convenient mass transit
- Driver refresher classes
- Adopt uniform and statewide standards for rumble strip construction and implementation.
- Provide incentives for employers to pay more attention to employee work schedules.
- Review all existing rest areas for improvements in lighting, facilities, maintenance, etc. Make this the first priority and new construction a secondary goal.
- Refocus financing to make roadside improvements a priority and make recovery zones a part of all project strategies.
Implementation through *Communities in Motion*

Communities in Motion has a long-term goal to promote and encourage reductions in long commutes by changing land use patterns and bringing more homes within walk and bike distance of employment, shopping, and services. An expanded public transportation system is dependent on getting a reliable source of operating funds. *Communities in Motion* does not include a greater level of transit services than what is currently provided due to financial limitations, primarily operating funds. COMPASS and its members have made obtaining financial resource for transit a high priority, and they were successful in getting legislation introduced in 2008 which would have allowed a local-option tax to be approved by voters. While this legislation was not passed, the statewide effort demonstrated the broad support for local option taxation for transportation.

While not specifically called for in *Communities in Motion*, COMPASS has backed legislation that would ban texting while driving.

Intersections

Although intersections only constitute a small portion of the overall highway system, they were the location of 40 percent of all traffic crashes in Idaho in 2008. Urban areas accounted for 82% of the intersection crashes, but rural areas accounted for 60% of the intersection-related crash deaths. Furthermore, it is to be expected that crashes are concentrated at intersections since they create numerous conflict points where differing traffic movements converge in one place.

Challenges at Signalized Intersections

- Drivers - insufficient turn lanes, geometry of intersection confuses drivers, access management, impaired drivers
- Roadway - sight distance, geometrics and design, lack of roundabouts, access management needed, visibility of traffic control device (signal), poorly timed signals, poor signing
- Political - need to legalize red light running cameras
- People/social - funding capacity for intersections
- Technical - lack of coordination to signalize lights, level of service capacity, poor signal timing leads to driver impatience

Challenges at Unsignalized Intersections

- Roadway - pavement markings, lack of roundabouts, access management needed, visibility of traffic control device (signal), poorly timed signals, poor signing, vision obstructions/ trees, crops, poor sight distance
- Weather - poor visibility/fog, slick conditions make it tough to stop
• Political - void between misdemeanors and felonies, aggressive penalties, licensing younger/older drivers, allowing young drivers to have passengers, removal of unwarranted signs is difficult

• People/social - vandalism of stop signs/other traffic signs, educations about slowing/stopping, awareness of pedestrians/cyclists, unawareness of other vehicles and right of way, pedestrians/cyclists unaware of vehicles, lack of funding for bike lanes

• Technical – roundabouts, access management, lack of right of way to add signals, lack of proper mechanisms for traffic control

Strategies

• Increased roadway safety enhancements

• LED signals, in-pavement lighting, interconnected signals, experimental use of flashing yellow arrows, signal timing and coordination, red light running cameras, audible pedestrian signals, countdown pedestrian crosswalk signals

• Exclusive left-turn lanes

• Roadway lighting

• Agency coordination - identify stakeholders/decision makers

• Change societal and cultural views on driving behavior, target youthful drivers, primary seat belt law

• Better roads, better engineering and maintenance, better pavement markings, add alternative types of intersections, such as roundabouts

Implementation through Communities in Motion

Within the Managing Congestion (Chapter 7), options for improved intersection concepts, including roundabouts, are presented. The virtue of roundabouts was discussed earlier in this chapter. Prioritization of safety would include elements such as improved signal systems, signal progression, street lighting, poor geometrics (sharp curves, poor lines of sight, etc.). Access management is also discussed in Chapter 7 and is a corollary to the functional classification map shown in Chapter 5. Maintenance is another priority in Communities in Motion and would address pavement markings (lane striping, stop bars, pedestrian crosswalks) and signal/signage maintenance.
Roadway Departure

In 2008, 5,985 roadway departure crashes accounted for 116 deaths, or about half of all Idaho highway fatalities. The majority of these crashed are on rural roadways. A roadway departure crash occurs when a vehicle departs its travel lane and collides with a fixed object or overturns. The ideal solution to roadway departure crashes is to keep vehicles from leaving the travel lane. One means of doing so is to identify cost-effective strategies that reduce unintentional lane departures. For events when departure is imminent, the primary objective is to alert the driver beforehand. The secondary objective is to assist the driver in safely returning to the travel lane and minimize the consequences of departure by creating clear zones along the roadside. The most common fixed objects involved in run-off-road crashes are trees, and the results of such crashes are generally quite severe.

Implementation through Communities in Motion Maintaining investments in operations and management will support many of the above measures. Chapter 7 discusses many of the measures such as innovative intersection designs (roundabouts, et. al.), signal improvements, access management, and other means of improving existing transportation systems. Complete street approaches (Chapter 6) will lead to more consideration of other transportation users and design needs, including improved pedestrian crossings, better street lighting for visibility, bike lanes, and other treatments.

These improvements will require higher levels of investment, which is the aim of Chapter 12.

Vulnerable Users - Bicyclists, Motorcycles, and Pedestrians/School Children

Bicyclists

In 2008, 11 pedestrians and 2 bicyclists were killed in traffic crashes. Theses represented 6 percent of all fatalities in Idaho. Children, ages 4 to 14, accounted for 21 percent of the fatalities and injuries sustained in pedestrian crashes and 21 percent in bicycle collisions. Collisions involving bicyclists and pedestrians cost Idahoans nearly $138 million dollars in 2008. This represents 5 percent of the total economic cost of collisions.

Challenges

- Enforcement, wrong-way riding, night riding without lights, right of way conflicts, laws for bikes and cars not consistent (i.e. stoplight rules)
- Targeted education needed - car drivers not aware of bicycles, lack of bicycle rider education, no training on speed differences between bikes and highway users, cars and bikes sharing space, drinking pedestrians and bicyclists, pedestrian rules not understood or followed, not wearing helmets, who has the right of way, lack of tolerance (for bikes and pedestrians), difference between car rules and bike rules
Infrastructure

- Roads designed for cars only; not for multiple users
- Lack of bike/pedestrian paths, sidewalk riding
- Schools built in residential areas without the path systems to handle increased bike and pedestrian traffic

EMS

- Lack of training for removal of helmets on injured cyclists by EMS personnel
- Lack of training in motorcycle-specific injuries

Bicycle accidents have been a major topic during the past year due to some highly publicized fatal accidents (Figure 10-9).

Total bicycle accidents held steady from 2000 to 2004, but increased sharply in 2005. Injuries in these accidents track closely with the number of accidents due to the exposure of the cyclist. Fatalities are more erratic and involve the motor vehicle speed, size, and the angle of impact.

In 2009, 60% of the bicycle-involved accidents and injuries occurred at intersections. Two of the three fatalities were intersection related. This statistic presents a challenge when considering additional bike lanes or paths. In most cases, these paths and lanes will intersect with the roadway system. Improving signage, pavement marking, street lighting and other elements are critical. As the number of bicyclists increases, the need for improved facilities will grow.

ACHD adopted a Roadways to Bikeways Plan in May 2009, Meridian adopted a Pathways Master Plan in January 2010, and Caldwell adopted a Pathways and Bike Route Master Plan.10

10 www.achdidaho.org/Projects/PublicProject.aspx?ProjectID=77
http://www.meridianidaho.org/parks_rec.aspx?id=2667
Pedestrians

Between 2000 and 2009 there were 917 accidents involving pedestrians. Typically these are pedestrians involved with cars or trucks, but the accident data also show accidents involving pedestrians and motorcycles or bicycles. Figure 10-10 shows that injury data track closely with accident data. Injuries exceed the number of accidents since there can be more than one pedestrian involved, or the vehicle driver or occupant may be injured. Fatality data are more erratic, with the second highest total in 2002, which was “average” for pedestrian involved accidents.

The peak time for pedestrian accidents is between 7:00 am and 8:00 am. More than 10% of the total accidents during the past ten years happen then. The number of children going to school and people walking to work combined with poor lighting and drivers hurrying to their own destinations are deadly combinations. Of all the accidents, 40% occurred under poor lighting conditions (dawn/dusk or dark).

Current Strategies

- Established bicycle/pedestrian advisory committees in most major cities
- All federal-aid projects in Idaho are reviewed to check for adequate bicycle accommodations.
- Over 50,000 copies of Idaho Bicycling Street Smarts are in the process of being distributed to the public at no cost.
- Updated the Idaho Bicycle Commuter Guide.
- Idaho has 11 League Cycling Instructors (six added in 2006), certified by the League of American Bicyclists
- Incorporated bicycling facilities in roadway projects
- Establishing bicycle advisory committees
- Established the Treasure Valley Cycling Alliance a nonprofit organization.
- Establish a Safe Routes to School program
- Established a Safe Kids program
Potential New Strategies

- Stop impaired driving - legalize sobriety checkpoints\(^{11}\), mandate judicial support of laws by instituting mandatory penalties for impaired driving, have a DUI/drug court in every Idaho county with supervised DUI probation, get legislative and Idaho State Police buy-in for increased personnel, use the available federal funding currently left on the table.

- Eliminate aggressive driving - increase the number of Idaho State Police troopers by 90 and support staff by 15 within 5 years, implement electronic enforcement, educate Idahoans about what aggressive driving is and its impact on fatality numbers

ACHD has resolved to dedicate 5% of its annual capital budget and half of its new vehicle registration fee revenues (approximately $4M total each year) to sidewalk and other pedestrian projects.

Motorcycles

In 2008, motorcycle collisions represented just 3 percent of the total number of collisions, yet accounted for just over 13 percent of the total number of fatalities and serious injuries (Figure 10-11). Just over half (55 percent) of all motorcycle collisions involved a single vehicle, and 48 percent of fatal motorcycle collisions involved a single vehicle. Idaho code requires all motorcycle operators and passengers under the age of 18 to wear a helmet. In 2008, only 27 of the 36 (75 percent) motorcycle drivers and passengers, under the age of 18 and involved in crashes, were wearing helmets. The National Highway Traffic Safety Administration estimates helmets are 37 percent effective in preventing motorcycle fatalities. In 2008, 61 percent of motorcyclists killed in collisions were wearing helmets. Motorcycle crashes cost Idaho $262 million dollars in 2008.

\(^{11}\) Under current law, sobriety checkpoints are illegal in Idaho in the absence of authorizing legislation. (State v. Henderson, 756 P.2d 1057 (Idaho 1988))
Challenges

• Education - not wearing helmets, lack of high-speed training, motorcyclists not following the rules in congested areas, daring attitudes, scooters operated by youth, lack of ongoing education, lack of visibility to others (awareness of drivers), lack of training for all riders

• Enforcement - impaired driving, definition of street legal not clear, too fast in curves, running between lanes of stalled traffic, not losing motorcycle endorsement for violations, aggressive driving

• Engineering – low visibility of scooters, scooters sold as toys, road hazards for motorcycles (i.e. pavement crack sealant, manhole covers in curves, slick road markings, etc.)

Strategies

• Provide training through the statewide Skills Training Advantage for Riders (STAR) program.

• Provide motorcycle skills testing Increased motorist awareness by:
 o Operating booths promoting motorist awareness as well as rider training.
 o Forming and support the Governor’s Idaho Motorcycle Safety Advisory Council.

• Stop impaired driving - legalize sobriety checkpoints, mandate judicial support of laws by instituting mandatory penalties for impaired driving, have a DUI/drug court in every Idaho county with supervised DUI probation.

• Increase education, enforcement and awareness - increase training by having training facilities and staff available within 50 miles of all motorcycle users. Increase the number of citizen awareness programs regarding motorcycle, scooter, etc. rules and issues (targeted at all Idahoans), require training for all motorcycle users who are ticketed and do not have a motorcycle operator's endorsement to avoid license forfeiture.

• Get legislative and Idaho State Police buy-in for increased personnel - use the available federal funding currently left on the table, implement electronic enforcement.

The trend for motorcycle/moped accidents in Ada and Canyon Counties shows a dramatic increase from 2000 to 2007. During this period, the total number almost doubled. As Figure 10-11 shows, injuries track very closely with the accident figures given the speed and exposure of the motorcycle driver and any passengers. Declines since 2007 may be attributable to the programs under the SHSP.

Implementation through Communities in Motion

Many of the challenges and strategies in the SHSP lie in improved training, education and enforcement. While these are critical areas, their implementation mostly lies outside of Communities in Motion. A rash of bicycle fatalities in 2009 triggered the attention of state and local officials, with legislation and local ordinances being considered to mandate minimum clearance distances when drivers are passing bicyclists.
Safe Routes to School funds are being programmed in the Transportation Improvement Program for education and physical improvements. A complete streets policy in Communities in Motion will encourage inclusion and consideration of project design elements to meet the needs of all users—not just those of vehicle drivers. This means that projects being considered for federal funding would need to identify the need for pedestrian crossings, bike lanes, sidewalks and pathways, appropriate street lighting, and other elements.

Communities in Motion also calls for prioritization of maintenance and safety projects. While maintenance is often overlooked as a safety feature, rough pavements, potholes, broken streetlights, and other deficiencies can present hazards to all transportation users. Users are not the only ones who might suffer from poor maintenance: the exposure of the transportation agency to a lawsuit based on inadequate maintenance contributing to an accident should not be overlooked.

Young Drivers

The SHSP found that drivers between ages 15 to 19 represented 6 percent of licensed drivers in Idaho in 2008, yet they were involved in 14 percent of the fatal and serious injury collisions. In 2008, drivers age 15 to 19 constituted 11 percent of the impaired drivers involved in collisions, despite the fact they were too young to legally consume alcohol. National and international research indicates youthful drivers are more likely to be in single-vehicle crashes, to make one or more driver errors, to speed, to carry more passengers than other age groups, to drive older and smaller cars that are less protective, and are less likely to wear seat belts. Only 3 of the 17 (18 percent) youthful drivers involved in fatal crashes were wearing a seat belt. Collisions involving youthful drivers cost Idahoans over $536 million in 2008. This represents 21 percent of the total economic cost of collisions.

Challenges

- Distractions (cell phones, music, food, and friends), multiple passengers
- Impairment via alcohol, drugs, or fatigue
- Night driving
- Immature brain and physical and emotional development, driving too young, inadequate training
- Speeding
- Too much car for young driver, junky cars (no airbags, unsafe)

Strategies

- Three-month intensive law enforcement campaign, in conjunction with the aggressive driving program, targeting youthful aggressive drivers.
- A multi-media ad campaign to support the law enforcement campaign and to raise awareness.
- Add the “Drive Program” to Idaho driver’s education instructors in partnership with the Department of Education.
• Evaluate the effectiveness of program components to identify performance measures and find ways in which to improve the program.
• Change the law to limit number of passengers.
• Increase the number of enforcement personnel on the road.
• Institute a primary law seat belt law. Increase fine for no seat belt use.
• Apply for federal funding for education.
• Engage in stakeholder work to introduce legislation and sell public to increase the driver age for licensure.
• Increase education with “Click it or Ticket.”
• Award certification of usage linked to insurance policy coverage.
• Find additional methods to increase youth accountability.
• Mandatory education programs (in schools/drivers education).
• Campaign/media appeal to age groups for alcohol/drug abstinence Increase night time driving restrictions.
• Stiffen penalties for violations of passenger restrictions – include suspensions.
• Provisional licenses until 17 or 18.

Assuming that the 2008 Idaho percentage of young drivers\(^\text{12}\) (6.2\%) holds for Ada and Canyon Counties, how does this compare with this age group’s share of accidents in the region (Figure 10-12)? In 2008 there were 8,464 accidents, resulting in 42 deaths and 4,314 injuries. Accidents involving drivers between 15 and 19 years of age totaled 2,603, with 12 fatalities and 1,528 injuries. This means that teen-involved accidents represented 31\% of the accidents, 28.6\% of the fatalities, and 35.4\% of the injuries.

These numbers are consistent with the most recent ITD reports on teen driving and safety, which notes that “…youthful drivers were involved in 2.6 times as many crashes as you would expect…and were 2.9 times as likely as all other drivers to be involved in a crash.”\(^\text{13}\)

Teen involved accidents have fallen in number and as a percentage of total accidents within Ada and Canyon counties (Figure 10-12). Some of this may be attributable to the drop in the percentage of population group between 14 and 19.

Implementation through *Communities in Motion*

While not included as a measure in *Communities in Motion*, COMPASS has backed legislation to make driving while texting a violation. Since distraction by texting—along with cell phone use and conversing with passengers—is a source of inattention, and inattention is the single largest cause of accidents where specific driver behavior is noted, this measure could assist in further reductions of accidents. Provision of alternatives to driving is not specifically noted as a measure in the SHSP, but *Communities in Motion* does promote alternatives, including transit, walking, and biking, that could also reduce teen accidents.
CHAPTER 11

MOVING GOODS AND AIR TRAFFIC

Background

Improving the system linkages between freight, multimodal surface roadways, and port/railroad infrastructure is important for the vitality of the national economy. State and local transportation planning efforts are envisioned to ensure the safe, efficient, and effective movement of people and goods as part of the national transportation system.

The federal Safe, Accountable, Flexible, and Efficient Transportation Equity Act-A Legacy for Users (SAFETEA-LU) legislation outlined eight federal planning factors. Three of the eight planning factors include freight-related provisions that should be addressed as part of the metropolitan transportation planning process as follows and specifically calls for the need to address freight movement as part of the transportation planning process:

- 23 U.S.C. §134 (a) Metropolitan transportation planning states that it is in the national interest to encourage and promote the safe and efficient management, operation, and development of surface transportation systems that will serve the mobility needs of people and freight and foster economic growth and development within and between States and urbanized areas, while minimizing transportation related fuel consumption and air pollution through metropolitan and Statewide transportation planning processes identified in this chapter; and encourage the continued improvement and evolution of the metropolitan and Statewide transportation planning processes by MPOs, State departments of transportation, and public transit operators as guided by the planning factors identified in subsection (h)(as shown below) and section 135(d).

- 23 CFR §450.306(a) The metropolitan planning process for a metropolitan planning area under this section shall provide for consideration of projects and strategies that will…

(1) Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity, and efficiency;
(4) Increase the accessibility and mobility of people and for freight;
(6) Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight;

"...statistics will save us from doing what we do, in the wrong places. ... The surplus, that which is produced in one place to be consumed in another; the capacity of each locality for producing a greater surplus; the natural means of transportation, and their susceptibility for improvement; the hindrances, delays, and losses of life and property during transportation, and the causes of each, would be among the most valuable statistics in this connection."

Internal Improvements, Speech of Mr. A. Lincoln of Illinois in the House of Representatives, June 28, 1848, Cong. Globe, 30th Cong., 1st Sess. 709-711 (1848)
As part of the metropolitan planning organization (MPO) participation planning requirements under title 23 U.S.C., the SAFETEA-LU consultation requirements were expanded in order to include freight shippers, who are providers of freight transportation services, as interested parties that should be provided a reasonable opportunity to comment on programs and long range transportation plans.

- **23 CFR §450.316(a)** - Interested Parties, Participation, and Consultation—The MPO shall develop and use a documented participation plan that defines a process of providing citizens, affected public agencies, representatives of public transportation employees, FREIGHT SHIPPERS, PROVIDERS OF FREIGHT TRANSPORTATION SERVICES, private providers of transportation, representatives of users of public transport, representatives of users of pedestrian walkways and bicycle transportation facilities, representatives of the disabled, and other interested parties with reasonable opportunities to be involved in the metropolitan transportation planning process.

- **23 CFR §450.316(b)** - In developing MTPs and TIPs, the MPO should consult with agencies and officials responsible for other planning activities within the MPA that are affected by transportation (including State and local planned growth, economic development, environmental protection, airport operations, or freight movements) or coordinate its planning process (to the maximum extent practicable) with such planning activities. In addition, MTPs and TIPs shall be developed with due consideration of other related planning activities within the metropolitan area…

The Idaho Trucking Association

The Idaho Trucking Association has been serving Idaho since 1934 and currently has 225 members. Their mission is the advancement of the interests of transporters of property and passengers by motor carriers, and to promote and preserve the inherent advantages of highway transportation.

Freight Services

Freight is the transport of goods that connects businesses to suppliers and markets by truck, rail, pipeline, air, and/or water. It is vital to the existence and growth of global, national, state, and local economies. Freight in southwestern Idaho is moved by highway, rail, and air. Within Idaho the transportation system moved 96,000 tons of freight worth $78 million per day to serve 520,000 households and 40,000 establishments. Approximately 97% of weight and 96% of value were hauled by truck within Idaho. As the Treasure Valley grows, so will the demand for goods; therefore, freight must remain competitive, effective, and responsive to these growing demands.
Highway Freight

The majority of freight movement in the region occurs via the highway system. Even freight brought into or leaving the area by other means is transported by truck either to or from the other modes of transportation. Trucking companies serve the region’s freight needs with widely varying travel patterns, times of operation, and specializations.

In 2007, the Treasure Valley Truck Freight Study was conducted to collect information about truck freight moving in, out, and around the Treasure Valley. The study consisted of three data collection efforts:

- The commercial vehicle intercept study interviewed more than 2,200 truckers at the ports of entry and truck stops about commercial vehicles classification by weight, size and configuration, trip origin and destination, land use at the origin and destination, time of day of travel, cargo transfer type, and cargo and trip frequency.
- The external station data collection project captured more than 51,100 vehicles entering, leaving, or passing through the area.
- The commercial vehicle survey surveyed over 460 local establishments, which amounted to travel data on more than 6,500 commercial trips. The data contained origin and destination of local trips, time of day travel, frequency of trip, length of trip, vehicle occupancy, cargo and route.

The external station data collection project evaluated through trip traffic for commercial and non-commercial vehicles by tracking vehicles entering at specific locations. These locations, shown on Figure 11.1, were collected on October 23, 2007, from 8:00 a.m. to 6:30 p.m. On that day, over 51,100 license plates were recorded which resulted in over 64% of all traffic “captured.” The results are interesting and surprising – less than 2% of the traffic on the interstate and state highways is passing through the area, and commercial vehicles contribute to half of this number. However, truck freight makes up over 16% of the traffic on the interstate and highways entering and leaving the Treasure Valley. This means freight is a large contributor to the local economy. If truck freight stops, the area has an average three day supply of food, medical supplies, cash, and auto fuel.

To learn more about the Treasure Valley Truck Freight Study, please visit the following website:
www.compassidaho.org/prodserv/specialprojects-tvfts.htm
For total trips monitored at the external locations, the following conclusions were reached:

- 3.7% (~1,500 of 40,006) of all vehicle trips entering at one of the nine locations pass through Treasure Valley.
- 10% (~720 of 6,965) of all commercial vehicles entering at one of the nine locations pass through the Treasure Valley.
- 2.4% (~780 of 33,042) of all non-commercial vehicles entering at one of the nine locations pass through Treasure Valley.

The two most critical locations were Stations 1 and 2, which monitored traffic entering the region via I-84. For commercial traffic entering at Station 1, at the Elmore/Ada County line, the study concluded that less than 700 trucks of the 10,100 entering also exited the region. This was about 7% of the total. For commercial traffic entering at Station 2, at the Payette/Canyon County line, the study concluded that less than 400 trucks of the 9,600 entering also exited the region. This was about 4% of the total. A majority of the through trips use I-84. The findings indicate that much of the commercial traffic has some business to conduct in the region in terms of delivering/picking up goods or simply fueling/dining. For non-commercial vehicles, the percentages were below 5%.

The conclusions indicate that provision of a “bypass” would not substantially reduce traffic on the most congested portions of I-84 between Nampa and the Wye Interchange. For example, current volumes approach 120,000 vehicles per day just west of the Wye Interchange. A bypass might reduce truck traffic by 600 vehicles per day and another 500+ non-commercial vehicles per day.
Rail Freight (with Passenger Discussion)

The railroads in Idaho operate 1,634 track miles in the state, including main lines, secondary main lines, branch lines, and short lines\(^1\). The state is served by two major long-haul railroads, the Union Pacific Railroad (UP) and the BNSF Railway, which provide connections to points in the United States, Canada, and Mexico. The state also has one regional railroad, as well as six short line railroads that act as feeders to the major railroads.

The railroads are an important part of Idaho’s transportation system and economy. Idaho’s railroads originate over 11 million tons of freight traffic annually. Farm products are the top commodity originated, accounting for approximately three million tons. Other top commodities originated by Idaho railroads are lumber and wood products, food products, chemicals, and nonmetallic minerals. Idaho railroads also terminate over nine million tons of freight annually, including farm and food products, nonmetallic minerals, and chemicals.

Rail freight in southwest Idaho focuses on farm, food, and wood products, and this focus is expected to continue. The closing of the region’s Boise Cascade sawmills and the Nampa rail intermodal facility (Comptons) have resulted in a reduction in the proportion of wood products being shipped by rail in the future.

The Union Pacific Railroad main line is the primary rail system in the region that moves goods to and from the West Coast ports and Midwest markets. Amalgamated Sugar and Simplot are UP’s largest customers in the region. According to UP staff, the company does not plan to change its operations in the region; however, they are concerned about the safety of rail crossings and adequate separation from populated areas.

Boise Valley Railroad (BVRR) leases the freight rights for the Boise Cutoff (the section of rail between Nampa and Boise) and serves a number of industrial customers, with a focus on forest products, agricultural products, and chemicals. In recent years, BVRR has rebuilt a declining freight market, increasing volume by one-third. This demonstrates a legitimate need for rail freight movement. While there is still some room for future expansion through existing customers, the line has a limited number of available building lots that abut the rail corridor. Some prime rail building sites are occupied by non-rail users.

The City of Boise wants to continue to preserve the rail corridor, which it owns from Hillcrest Road to Orchard Street, for industrial uses in order to encourage economic development as well as for a variety of local and regional uses including potential passenger service. Any significant increase in rail-served industrial land would likely have to come east of Boise, along a line previously used by Amtrak, to provide service to Boise off the UP main line. BVRR says clients have expressed interest in finding large industrial development parcels that could be served by rail but a limited number of sites are currently available. Existing restrictions prohibit the movement of hazardous materials along the Boise Cutoff due to its proximity to urban areas.

While BVRR leases the freight rights on the Boise Cutoff, it does not own the rails nor have the rights to operate passenger service. After the end of Amtrak service on the Cutoff in 1997, the City of Boise acquired the rail section connecting Boise to the main line near the Orchard town site, southeast of Boise, through a purchase and donation to preserve that corridor.

In 2003, Valley Regional Transit took an initial step to evaluate the possibility of regional passenger rail service from Boise to Nampa. This technical study, called the Rail Corridor Evaluation, determined the track is still in good condition, but requires upgrades if used for passenger service. This upgrade is estimated to cost between $40 and $50 million, with at least that much more for the purchase of the rail cars and construction of stations, park and ride lots, a dispatch/control center, and a maintenance facility. Funding to support the costs to operate the system would have to be secured.

The introduction of passenger service on the Boise Cutoff will affect BVRR’s business along the single branch line. However, because the Boise-Nampa rail line handles only a moderate to light level of local freight traffic, it may be possible to shift rail freight service to nighttime hours only. While there are some areas where freight trains could pull aside to allow passenger trains to pass, it would most likely require BVRR to service customers at off-peak hours. Assuming possible future public ownership of the Boise Cutoff, commuter passenger service would still require an agreement with BVRR.

The feasibility of passenger commuter rail service along that corridor will depend upon the development of an integrated land use and urban design pattern and identification of a local, on-going funding stream. The rail system also depends on an extensive complementary bus system to link other parts of the region to the rail corridor. Treasure Valley High Capacity Transit Study, complete in 2009, evaluated a range of options to serve the area between downtown Boise and the City of Caldwell. The study found that evaluating four arterial alignments - Fairview Avenue/Cherry Lane, Franklin Road, Overland Road and the Boise Cutoff rail best addressed the purpose of the study. Three transit modes, bus rapid transit-exclusive lane, bus rapid transit-mixed traffic, and light rail were evaluated on each alignment. Please refer to Chapter 6, Expanding Transportation Choices, for more in-depth discussion of transit.

Air Travel and Freight

The largest air facility in the region is the Boise Airport (BOI), also known as Gowen Field or the Boise Air Terminal. In the mid-1990s, the Boise Airport began expansion to accommodate more passengers and freight. A master plan evaluated the community’s recent and future growth and suggested that the airport grow in phases. The plan predicts an increase from the current three million annual total passengers to approximately six million by 2020.3 A new terminal was opened in 2003; a year later, the airport unveiled a new food court, ground-loading concourse, and a security checkpoint. In 2005, Concourse B was refurbished. Future additional improvements include:

- New taxiway exit for the runway
- Full-length, parallel taxiway on the south side of the runway
- New, longer parallel runway
- Relocation of the traffic control tower
- Larger spaces for general aviation, air cargo, and the National Interagency Fire Center
- Additional parking.

These improvements are paid for using federal grant funds, direct funding from the Federal Aviation Administration, use fees, and terminal rent.

3 “Boise Airport Year in Review,” 2003, Page B.
Table 11-1 shows general statistics and projections for the Boise Airport from 1995 through 2035, which illustrate the growth the airport has experienced and expects to experience in the next 25 years. End of year 2006 and 2007 experienced the highest volume of freight and enplaned passengers at 94,874 tons and 1,679,427, respectively.

Table 11-1: Boise Airport Statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enplaned Passengers</td>
<td>1,107,571</td>
<td>1,397,772</td>
<td>26%</td>
<td>1,918,200</td>
<td>37%</td>
</tr>
<tr>
<td>Total Freight</td>
<td>57,386</td>
<td>73,528</td>
<td>28%</td>
<td>121,600</td>
<td>65%</td>
</tr>
</tbody>
</table>

The above figures do not show the effects of the recent economic downturn on passenger volumes from 2008 to today. The forecasts do not assume this downturn will continue for an extended period of time although, included in the forecast calculation.

Gowen Field, located within the Boise Airport, is home to the Idaho National Guard, which includes the 124th Wing of the Air National Guard and two aviation battalions of the Army National Guard. With Mountain Home Air Force Base located approximately 50 miles east of Boise, U.S. Air Force aircraft use the Boise Airport on a regular basis. All counties within the study area rely on the Boise Airport for commercial passenger air travel. Two airports in Canyon County serve general aviation: Caldwell Industrial Airport and Nampa Municipal Airport.

The Caldwell Industrial Airport sits alongside I-84 on 154 acres of land. A total of 460 acres was purchased in 1971 for the airport to ensure an adequate amount of land for future growth. Over 400 aircrafts are housed at the airport with enough room for 1,000 more. The airport’s master plan calls for an extension to the runway (from 5,500 feet to 7,140 feet) and installation of a precision approach. A new 9,000 square foot terminal building is under construction and completion is expected fall 2010. The new terminal will include a state of the art pilots’ lounge, car rental booths, insurance and freight offices, and a 100-seat café.4

Boise constructed its first municipal airport in 1926 along the Boise River, where Boise State University is located today.... By 1938, Boise purchased land and relocated the airport to its current location. At the time the 8,800-foot runway was the longest in the nation.

- Boise Airport Year in Review 2003

To see the locations of these airports, please visit the following website:

The Nampa Municipal Airport was built in 1929 and is located on 242 acres in northeast Nampa; it has an additional twenty acres for future development. The city owns the airport. A single runway, 4,050 feet by seventy-five feet accommodates an estimated 118,100 annual operations (August 2005) and 315 based aircraft. Nampa airport staff estimate the facility could accommodate another 71 aircraft hangars plus 12 business lots for additional aircraft. Future plans integrate airport development and surrounding uses to achieve long-term compatibility. The airport has a master plan that will guide phased development through 2012.

Other airports exist in the six-county area, but the majority are private use facilities. Table 11-2 shows a listing of public use airports in the planning area.

Although Mountain Home Air Force Base in Elmore County is not used publicly, the base is important to the region. Mountain Home Air Force Base and the 366th Fighter Wing have a rich history that stretches back more than 50 years to the United States’ entry into World War II. Although the wing itself was not activated until after World War II, it shares the World War II heritage of the 366th Operations Group, whose precursor organization, the 366th Fighter Group, was established about the same time the base was being built.
<table>
<thead>
<tr>
<th>County</th>
<th>Airport</th>
<th>Acreage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>Boise Airport</td>
<td>5,000</td>
<td>Operated by the City of Boise</td>
</tr>
<tr>
<td>Boise</td>
<td>Garden Valley Airport</td>
<td>25</td>
<td>Operated by the Idaho Transportation Department, Division of Aeronautics</td>
</tr>
<tr>
<td>Boise</td>
<td>Idaho City USFS Airport</td>
<td>12</td>
<td>Operated by the U.S. Forest Service</td>
</tr>
<tr>
<td>Boise</td>
<td>Warm Springs Creek (Lowman)</td>
<td>19</td>
<td>Operated by the Idaho Transportation Department, Division of Aeronautics</td>
</tr>
<tr>
<td>Canyon</td>
<td>Caldwell Industrial Airport</td>
<td>154</td>
<td>Operated by the City of Caldwell</td>
</tr>
<tr>
<td>Canyon</td>
<td>Nampa Municipal Airport</td>
<td>191</td>
<td>Operated by the City of Nampa</td>
</tr>
<tr>
<td>Canyon</td>
<td>Parma Airport</td>
<td>44</td>
<td>Operated by the City of Parma</td>
</tr>
<tr>
<td>Canyon</td>
<td>Atlanta Airport</td>
<td>14</td>
<td>Operated by the Idaho Transportation Department, Division of Aeronautics</td>
</tr>
<tr>
<td>Canyon</td>
<td>Graham USFS Airport</td>
<td>11</td>
<td>Operated by the U.S. Forest Service</td>
</tr>
<tr>
<td>Canyon</td>
<td>Weatherby USFS Airport</td>
<td>15</td>
<td>Operated by the U.S. Forest Service</td>
</tr>
<tr>
<td>Canyon</td>
<td>Glenns Ferry Municipal Airport</td>
<td>85</td>
<td>Operated by the City of Glenns Ferry</td>
</tr>
<tr>
<td>Elm</td>
<td>Mountain Home Municipal Airport</td>
<td>443</td>
<td>Operated by the City of Mountain Home</td>
</tr>
<tr>
<td>Payette</td>
<td>Pine Airport</td>
<td>16</td>
<td>Operated by the Idaho Transportation Department, Division of Aeronautics</td>
</tr>
<tr>
<td>Payette</td>
<td>Smith Prairie Airport (Prairie)</td>
<td>39</td>
<td>Operated by the Idaho Transportation Department, Division of Aeronautics</td>
</tr>
<tr>
<td>Payette</td>
<td>Emmett Municipal Airport</td>
<td>80</td>
<td>Operated by the City of Emmett</td>
</tr>
<tr>
<td>Payette</td>
<td>Payette Municipal Airport</td>
<td>260</td>
<td>Operated by the City of Payette</td>
</tr>
</tbody>
</table>
Linking Project Prioritization and Freight Corridors

National and Regional Freight Corridors

Emphasis on freight planning and ways to fund freight projects is increasing, especially in freight-hubs like Chicago. However, smaller areas must also engage in freight planning due to federal regulations. Current federal guidance requires each state to develop a freight plan – much like a long range transportation plan. This would roll up into a national freight plan to create a more holistic merit based approach. However, competition for federal funding is fierce so new revenue sources are necessary just to maintain the existing program. One of the first steps to integrate freight into planning is to identify freight corridors – these are NOT truck routes nor should be interpreted as such. Figure 11-2 highlights Interstate 84 – national and regional corridor; and the Union Pacific main rail line – regional corridor.

![Figure 11-2: National and Regional Freight Corridors](image-url)
Local Freight Corridors

Based on results from the commercial vehicle survey the corridors listed below and shown in Figure 11-3 are used most for local freight and directly influence the points received during prioritization. Over 75% of the local truck freight is by light truck, van, and passenger car or sport utility vehicle. Heavy two-axle trucks make up only 11.6%. Over 88% of the destinations are to the cities of Boise, Nampa and Meridian.

1. I-84 - 12.1%
2. US 20/26 (Chinden Boulevard) - 3.3%
3. SH 44 (State Street) - 3.3%
4. Franklin Road/Franklin Boulevard\(^5\) - 3.2%
5. Eagle Road (SH 55) - 2.7%
6. Overland Road - 2.0%
7. Cole Road - 1.5%
8. Cloverdale Road - 1.1%
9. Emerald Street - 1.1%
10. Fairview Avenue - 2.5%

\(^5\) Total for both routes - most drivers did not distinguish between Franklin Road and Franklin Boulevard.

Figure 11-3: Local Freight Corridors
Project Prioritization

Transportation projects that improve safety and/or the mobility of goods for the above identified freight corridors will receive points during the annual transportation improvement program (TIP) prioritization process (Table 11-3), once approved by the COMPASS Board. These projects would consist of but are not limited to: intersection improvements, railroad crossing upgrades, new railroad overpasses, new or improved interstate overpasses, roadway widening, access control, intelligent transportation systems and/or maintenance.

To learn more about the TIP Project Prioritization Process, please visit the following website:

http://www.compassidaho.org/prodserv/transimprovement.htm

Table 11-3: TIP Project Prioritization, Potential Points (as of June 17, 2010)

<table>
<thead>
<tr>
<th>Primary Freight Routes (10 points)</th>
<th>1-84</th>
<th>US 20/26 (Chinden Blvd)</th>
<th>SH 44 and State St Franklin Road/Boulevard6</th>
<th>Garrity Boulevard Eagle Road (SH 55) Fairview Avenue Overland Road</th>
<th>Cole Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Freight Routes (7 points)</td>
<td>10th Avenue (Caldwell)</td>
<td>11th Avenue (Nampa)</td>
<td>Broadway Avenue</td>
<td>Caldwell-Nampa Boulevard</td>
<td>Cherry Lane</td>
</tr>
<tr>
<td>Support Facilities (4 points)</td>
<td>As described by project sponsor and accepted by RTAC Scoring Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Respondents did not distinguish between Franklin Road and Franklin Boulevard therefore, given total points for both routes.

7 Routes added for connectivity between primary routes indicated in the survey results.
Freight movement in Idaho is an important element of Idaho’s transportation future. Whether used to transport agricultural products, high tech components, or numerous commodities, transportation is the thread that binds our state’s economy together. Freight growth across the nation is expected to nearly double by 2035 with 61% of all commerce in commodities involving truck transportation on our nation’s roads and highways (Freight Facts and Figures, 2009). Investing in freight infrastructures and networking the various modes will facilitate the movement of vital commodities.

More information about freight is located on the following websites:

Freight Analysis Framework: www.ops.fhwa.dot.gov/freight/freight_analysis/faf

Economic Census: http://www.census.gov/econ/census07/

Treasure Valley Truck Freight Study: http://www.compassidaho.org/prodserv/specialprojects-tvtfs.htm

Coalition for America’s Gateways and Trade Corridors: www.tradecorridors.org
CHAPTER 12

FINDING THE MONEY

Federal Requirements

Federal regulations1 state that the total cost of the investments in the plan cannot exceed the estimated funding available over the life of the plan. Specifically, the “funded” projects and services have to be within the projected revenues. Only these funded projects and services can be used to determine air quality conformity. The unfunded projects and services can be described in the plan, a category that the US Department of Transportation calls “illustrative”; this plan simply calls them “unfunded.” That means these projects and services are included for information only.

The estimate of funds must account for maintenance of the existing and planned transportation system. The projected revenues need to be based on historic trends. The revenue projections can include new funds for which a track record exists. For example, if a gas tax increase has been periodically approved by the state legislature, it would be reasonable to assume future increases. But if in the past, approval of a local option sales tax did not occur, it would not be reasonable to assume that approval would be granted in the future.

The Importance of Financial Analysis

If you wanted to build a house you would determine how much you could afford to spend. It would be unwise to design a home that would cost $1 million if your income supports a home costing $200,000. In addition, any bank looking at your ability to make house payments will look at your other expenses – medical, food, utilities, and other debts. At the same time, your vision of your future home might incorporate some later add-ons if your income goes up. So plan big—as long as you know the fiscal realities and do not commit to more than you can afford.

The same requirements are placed on preparing a regional transportation plan.

• How much money can we reasonably expect to be available?
• What are our other expenses that will draw upon these resources?
• What new funds might we expect, and on what basis do we expect them?
• What would our desired transportation system cost, including added maintenance for major investments?
• If our transportation “wants” list adds up to more than our resources, what elements are we going to cut—at least until we find more money?

These questions are at the heart of a financially constrained transportation plan and are not much
different than any household budget, except that the plan deals with billions of dollars.

This chapter covers the sources of funds (revenue) and the outlay of these funds (expenses). It then
looks at how the costs of the desired transportation investments stack up against our expected income, how
we might make decisions about what gets done, and where we might look for new revenues to fund the rest
of our transportation system. The bottom line is that to implement all the road corridors in Chapter 5 of this
plan while maintaining and operating the total road system would require another $3.9 billion, while the
expanded transit system presented in Chapter 6 would require another $1.5 billion to implement. Raising
$5.4 billion over the next 25 years will require increases in fees or taxes. (These figures reflect inflation across
time.)

Purpose of Funding Transportation Needs

In spring 2009, COMPASS commissioned a study
to examine transportation funding issues in preparation
for the update of *Communities in Motion*. *Funding
Transportation Needs* examined financial assumptions and looked at anticipated inflation and growth of future
revenues for future transportation improvements and maintenance. Federal rules require metropolitan
transportation plans, such as *Communities in Motion*, to be fiscally constrained, meaning:

- Base revenues can only consider current sources, with reasonable assumptions for increases based on
 historic patterns.
- Project expenses must be inflated to the “year of expenditure.”
- The plan must address maintenance of the existing transportation system.

The *Funding Transportation Needs* study focused on Ada and Canyon Counties. It addresses funding and
expenses for local roadways, state highways, and public transit.

The Economic Setting

Unsettled economic times affect this financial outlook. Major issues include:

- Construction costs skyrocketed from 2003 to 2007, resulting in rapidly escalating construction and
 maintenance costs.
- High crude oil prices flattened fuel demand in 2008, resulting in flat federal and state revenues and
 increasing roadway and transit costs such as asphalt and fuel.
- Beginning in 2006, construction activity slowed, resulting in declines in local impact fee revenues and
 sales tax revenues.

A full report of *Funding Transportation Needs* can be viewed at
http://www.compassidaho.org/reports.htm
Starting in 2008, the housing crisis threatened local property tax revenues through dropping values and delinquencies in tax payments. Declines in auto sales and other retail activities reduced sales taxes and vehicle fees.

The Federal Highway Trust Fund is depleted, with record federal budget deficits.

In the face of these and other uncertainties, the approach taken by the consultant was to evaluate ranges of probabilities for the forecast.

Roadway Revenue Assumptions

- Federal funding for roadway and transit will increase at minimum levels.
- The Idaho Transportation Department’s (ITD’s) share of Highway Distribution Account (HDA) funds will be fully committed to existing projects or matching federal grants. No changes to HDA allocation formulas were assumed.
- No change in the state and federal fuel tax rates.
- Modest increases in Idaho fuel usage at a rate of 0.9% per year—half the 1981-2007 average growth rate.
- Regional property tax revenues at an average rate of 2.3% each year.
- Impact fees increase 2.0% per year.
- Local option registration fees increase 4.0% per year.
- Local roads will rely more on local revenue and less on state revenue.
- Federal funding share of local roadway expenses will decrease from 11% to 8%.

Based on these assumptions, by year 2035, local roadway revenues (less state system revenue) could be approximately $231 million per year, up from approximately $115 million in 2010. Total roadway revenues in the two-county area, including state system, could total $318 million by 2035.
Roadway Costs

Key findings regarding updated *Communities in Motion* project costs include:

- Inflation has increased the cost of existing *Communities in Motion* projects from about $2.6 billion, in 2005 dollars, to $3.1 billion, in 2009 dollars.
- Short term (2010-2014) inflation rates are anticipated to be 2.8%.
- Long term (2015-2035) inflation rates are estimated to be 4.0%, consistent with Federal Highway Administration’s guidance.
- With forecasted inflation, the cost of building the corridors in *Communities in Motion* could be $7.1 billion over the life of the plan, with a 50% probability that costs would be higher.
- Local road maintenance and operations alone will likely cost about $190 million (annual) by 2035.
- The annual deficit for just the local road entities could be $200 million by 2035, with a cumulative deficit between $1 and $1.6 billion by 2035.
- By 2035 the total annual roadway funding deficit (including local and state roads) could be up to $427 million.
- Given the uncertainty of any forecasting, the study concluded that within Ada and Canyon Counties the cumulative deficit could range from $2.8 billion to $3.9 billion—with an 80% probability that it would be greater than $2.8 billion.

Transit Revenue Assumptions

- Revenues for local transit stem from federal and local sources, with minimal state transit funding.
- Federal funding accounts for about 40% of Valley Regional Transit’s (VRT) annual budget and is used for operations, preventative maintenance, capital expenditures, and other activities.
- Federal transit funds could escalate at a rate of 5.8% each year; however, after 2012, federal rules may prevent using federal funds for operating costs. In 2009 this amounted to 15% of operating costs—$1.7 million.2
- Local government contributions and operating revenues (bus fares and advertising revenues) generated $8.5-$9.0 million in revenue in 2009.
- Local funds for transit would increase in the near-term to recover the lost revenues. Starting in 2011 it is assumed that local revenues increase at the rate of inflation plus the rate of local population growth.
- There would be no dedicated local-option revenue source for transit or roadway investment and operations.

2 The federal rules were changed in 1998 to eliminate federal coverage of most operating costs for urbanized areas with more than 200,000 people. This threshold was reached in the Boise/Meridian UZA after the 2000 Census. It is likely the 2010 Census will conclude that the Boise, Meridian, Nampa and Caldwell would be one urbanized area. As a result, all Section 5307 funding for operations after 2012 would be eliminated.
Transit Costs

- The study considered two levels of transit service above the current level:
 - VRT's High Growth Alternative, which would improve the regional bus system and ultimately support a rail system. This system would cost approximately $1.25 billion including capital through 2035, with an annual operating cost of $63.3 million in 2035 (with inflation) (Figure 12-1). Capital costs would total $212.9 million with inflation through 2035—but this cost does not include regional rail construction.
 - The Communities in Motion bus and rail system, which would provide rail service between Nampa and Boise. At full implementation, the system would cost $4.1 billion including capital through 2035, with an annual operating cost of $231.5 million in 2035 (with inflation).
 - Capital costs would total $1.36 billion with inflation through 2035, including rail construction.
 - The base or current level system was projected to grow with population and would total $840 million through 2035. Total costs would be $60.1 million in 2035 (with inflation). No rail or other high-capacity transit services would be implemented.
 - The annual funding gap between Communities in Motion and current would be $253 million by 2035.

Conclusions of the Study

Roadways

The future is a numbers game. With the major federal and state revenue sources not adjusted for a 4% inflation rate, the costs outpace the growth in revenue. Across time, the compounding of the difference in growth rates (revenue vs. costs) becomes critical. Local agencies will be taking in $231 million by 2035 under the “most likely” scenario. By that same year, local maintenance, equipment, and administration will consume $237 million. Major capital costs for 2035 alone will be $193 million. When the ITD revenues are added, the total pot rises to $318 million by 2035, but the added state costs push total expenditures to $745 million—leaving a total roadway deficit of $427 million. Between 2009 and 2035, the cumulative deficit could reach $3.9 billion. Of that amount, around $1.62 billion would be local roadways.
This rising gap between forecasted revenues and costs is shown in two charts (Figures 12-2 and 12-3). Figure 12-2 shows the gap with ITD costs and revenues. The “zigzag” in the early years represents the GARVEE (Grant Anticipation Revenue Vehicle) program. GARVEE is debt-financing of projects throughout Idaho, with a large portion being spent on I-84. The GARVEE bonds will be paid back with future federal funds. This payback has been subtracted from future revenue streams. Figure 12-3 shows just the local roadway side for Ada and Canyon Counties.

Roadway Maintenance

As noted above, maintenance costs on the local roadways alone in Ada and Canyon Counties will total $190 million in 2035. This expense was based on the approximate 3,500 lanes miles of local roads in Ada County and the 3,100 lane miles of local roads in Canyon County. Within the region there is another 1,440 lane miles of ITD roads. There are 266 bridges in Ada County, with another 284 bridges in Canyon County. These totals include local and ITD structures (20 feet or more in length). Of these, 30 are structurally deficient today and 47 are functionally obsolete. Structurally deficient means that a physical element of the bridge (abutments, piers, decks, webbing, etc.) is below accepted standards. Functionally obsolete means the bridge is inadequate to meet current travel demands (e.g., too narrow). Bridges can fall into both categories.

ITD has 2,551 lane miles to maintain in District 3 (southwest Idaho) alone—nearly 12,000 lane miles across Idaho. In addition, ITD has responsibility for 1,777 bridges. ITD has calculated that within the next 10 years, half of the state system bridges will be 50 years or older—at or beyond their useful life.

4 Source: ITD web page at http://itd.idaho.gov/revenue/aging.html
Increasingly, these bridges will need investments such as deck replacement or even totally new structures (replace abutments and piers along with the deck). Brian Ness, ITD Director, has noted that the current pace of bridge replacement will require bridges to last 120 years—not a likely scenario.

The need to increase the percentage of funds spent on maintenance means that fewer funds will be available to widen roads or build new roads. The conservative estimate in Funding Transportation Needs was that just the local system maintenance needs would consume half the total revenue available for roads over the next 25 years. The crisis facing the state system led to removing most of the planned ITD corridors from the funded category.

Where Does The Money Come From?

The resources for transportation come from three general sources:
- Federal grants
- State-collected funds
- Local funds

These funds are not always available for any purpose; instead, they are often restricted to specific activities. In general, some funds are limited to either roadways or public transportation.

Funds may be further limited to specific types of roads or public transportation. This is an important consideration when looking at the types of transportation we would like to have, but lack the resources. It is not always a simple matter to take the funds from other types of transportation.

Federal Funds

The federal government is a major funding source of transportation facilities and programs in the U.S. and its territories (see Appendix E). Funding authorization comes from legislation approved every six years. The most recent legislation, *Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users* (SAFETEA-LU), authorizes the federal surface transportation programs for highways, highway safety, and transit for the five-year period 2005-2009; it was signed into law on August 10, 2005, and replaced *Transportation Equity Act for the 21st Century* (TEA-21). Due to other federal priorities, reauthorization of SAFETEA-LU, which should have occurred in 2009, has been delayed. A “continuing resolution” by Congress has extended its terms. It is probable that SAFETEA-LU’s successor won’t be acted upon until late 2010 or even sometime in 2011.
Federal Highway Funds

For highways, the size of the federal highway budget is impressive. Note that the amounts authorized in the federal legislation are often larger than the obligation authority amounts. The latter amount is critical, since this is the maximum amount that may be obligated each year. The reason for this is to provide a cushion in case the revenues are not as robust as forecasted.

The withheld amount may be released at some time, if future revenues permit. Several key categories of funding for roadways are under the federal program. The authorizations by each category for Idaho are shown in Table 12-1.

Some of these programs are targeted toward alternate modes of transportation or toward improved technology to reduce congestion or pollution. Others, notably the Surface Transportation Program, may be flexed to roadway construction/maintenance, pathway construction, transit or vanpool vehicle purchases, other transit capital needs, or limited transit operations costs. National Highway System funds may be used under limited circumstances for public transportation. In general, none of the above sources are reliable for ongoing support for public transportation operating costs. A detailed list of Federal Highway Administration programs is located in Appendix E.

Financial support for programs comes from the Highway Trust Fund (HTF) established in 1956. Tax revenues directed to the HTF are derived from excise taxes on highway motor fuel and truck related taxes on truck tires, sales of trucks and trailers, and heavy vehicle use. The current federal gasoline tax is 18.4 cents per gallon and 24.5 cents per gallon on diesel. On average, each penny of the federal motor fuel tax produces almost $1.8 billion in revenues annually. Fuel taxes are by far the largest part of HTF income, constituting 91% of its income in FY 2004. As noted later, this reliance on the volume of fuel sales can be a weakness.

5 Authorized Amount. Upper limit of the amount of funds that can be appropriated for a program established under legislation by Congress. More details about federal budgetary terminology can be found online at http://www.rules.house.gov/archives/glossary_fbp.htm

6 Obligation Authority. A "ceiling" on the amount of federal assistance that may be promised (obligated) during a specified time period. http://www.fhwa.dot.gov/safetealu/factsheets/oblim.htm

7 Flexed Funds are funds that can be moved from one category to another. There are some restrictions.

Table 12-1: Authorized Funding for Federal Highway Programs – Idaho
(in millions)

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorized Amount (National)</td>
<td>$37,660.0</td>
<td>$38,560.0</td>
<td>$40,880.0</td>
<td>$42,250.0</td>
<td>$33,870.0</td>
</tr>
<tr>
<td>Idaho – By Funding Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate Maintenance</td>
<td>$35.5</td>
<td>$36.8</td>
<td>$37.4</td>
<td>$38.0</td>
<td>$38.6</td>
</tr>
<tr>
<td>National Highway System</td>
<td>$47.4</td>
<td>$49.4</td>
<td>$50.2</td>
<td>$51.0</td>
<td>$51.8</td>
</tr>
<tr>
<td>Surface Transportation Program</td>
<td>$36.1</td>
<td>$37.9</td>
<td>$38.3</td>
<td>$38.8</td>
<td>$39.5</td>
</tr>
<tr>
<td>Bridge Replacement & Rehabilitation</td>
<td>$15.3</td>
<td>$15.3</td>
<td>$15.5</td>
<td>$15.8</td>
<td>$16.0</td>
</tr>
<tr>
<td>Congestion Mitigation & Air Quality</td>
<td>$8.1</td>
<td>$8.4</td>
<td>$8.5</td>
<td>$8.6</td>
<td>$8.8</td>
</tr>
<tr>
<td>Recreational Trails</td>
<td>$1.1</td>
<td>$1.2</td>
<td>$1.3</td>
<td>$1.4</td>
<td>$1.4</td>
</tr>
<tr>
<td>Safety</td>
<td>$7.8</td>
<td>$6.9</td>
<td>$7.1</td>
<td>$7.2</td>
<td>$7.3</td>
</tr>
<tr>
<td>Rail-Hwy Crossings</td>
<td>$1.6</td>
<td>$1.8</td>
<td>$1.8</td>
<td>$1.8</td>
<td>$1.8</td>
</tr>
<tr>
<td>Border Infrastructure Program</td>
<td>$0.9</td>
<td>$0.9</td>
<td>$1.0</td>
<td>$1.2</td>
<td>$1.3</td>
</tr>
<tr>
<td>Safe Routes To School</td>
<td>$0.9</td>
<td>$1.0</td>
<td>$1.0</td>
<td>$1.0</td>
<td>$1.0</td>
</tr>
<tr>
<td>High Priority Projects</td>
<td>$27.4</td>
<td>$27.4</td>
<td>$27.4</td>
<td>$27.4</td>
<td>$27.4</td>
</tr>
<tr>
<td>Equity Bonus</td>
<td>$76.4</td>
<td>$75.9</td>
<td>$87.7</td>
<td>$94.9</td>
<td>$94.9</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$258.6</td>
<td>$262.7</td>
<td>$277.1</td>
<td>$287.0</td>
<td>$289.8</td>
</tr>
</tbody>
</table>

Table 12-2: Federal Transit Funding under SAFETEA-LU

<table>
<thead>
<tr>
<th>Idaho</th>
<th>Urbanized Formula (5307 and 5340)</th>
<th>Jobs Access/Reverse Commute -5316</th>
<th>New Freedom -5317</th>
<th>Non-Urbanized -5311 and 5340</th>
<th>Elderly & Persons with Disabilities -5310</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$6,106,144</td>
<td>$635,508</td>
<td>$310,456</td>
<td>$4,889,655</td>
<td>$537,815</td>
<td>$12,964,073</td>
</tr>
<tr>
<td>2007</td>
<td>$6,352,302</td>
<td>$663,139</td>
<td>$322,397</td>
<td>$5,071,595</td>
<td>$557,451</td>
<td>$13,470,082</td>
</tr>
<tr>
<td>2008</td>
<td>$6,888,822</td>
<td>$718,400</td>
<td>$359,408</td>
<td>$5,484,750</td>
<td>$596,724</td>
<td>$14,588,976</td>
</tr>
<tr>
<td>2009</td>
<td>$7,327,233</td>
<td>$757,544</td>
<td>$379,945</td>
<td>$5,796,196</td>
<td>$622,251</td>
<td>$15,454,565</td>
</tr>
</tbody>
</table>

Potential Regional Share (Non-Urbanized Areas Formula Based on 2000 Population Share)

<table>
<thead>
<tr>
<th>Idaho</th>
<th>Urbanized Formula (5307 and 5340)</th>
<th>Jobs Access/Reverse Commute -5316</th>
<th>New Freedom -5317</th>
<th>Non-Urbanized -5311 and 5340</th>
<th>Elderly & Persons with Disabilities -5310</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$3,446,000</td>
<td>$198,000</td>
<td>$112,000</td>
<td>$958,000</td>
<td>$209,000</td>
<td>$4,923,000</td>
</tr>
<tr>
<td>2007</td>
<td>$3,584,942</td>
<td>$207,000</td>
<td>$117,000</td>
<td>$994,000</td>
<td>$217,000</td>
<td>$5,119,942</td>
</tr>
<tr>
<td>2008</td>
<td>$3,887,721</td>
<td>$224,000</td>
<td>$126,000</td>
<td>$1,075,000</td>
<td>$232,000</td>
<td>$5,544,721</td>
</tr>
<tr>
<td>2009</td>
<td>$4,135,087</td>
<td>$236,000</td>
<td>$133,000</td>
<td>$1,136,000</td>
<td>$242,000</td>
<td>$5,882,087</td>
</tr>
</tbody>
</table>

Federal funding for transit comes under the Federal Transit Administration (FTA) program. SAFETEA-LU provides a combination of trust and general fund authorizations that total $45.3 billion for public transportation for fiscal years 2005–2009 ($52.6 billion over the six year period 2004–2009). Just over 80% is derived from the dedicated Mass Transit Account, with only New Starts, Research, and FTA Administrative funding coming from the General Fund. All funds, including the General Fund portion, are guaranteed, which means that the guaranteed annual levels are already “paid for” under Congressional budgetary rules. However, guarantees are always subject to change. Table 12-2 shows the breakout of the FTA funding for Idaho transit programs from 2006 through 2009.

Federal Transit Funds

Similar to the federal highway funding, federal transit funds are broken into categories of funding. Some can be used in urbanized areas\(^{11}\) while other funds are intended for services outside urbanized areas. All of the funding shown is under a formula basis: Idaho does not need to compete for these funds.

Section 5307. Provides grants for urbanized areas for public transportation capital investments and operating expenses in areas less than 200,000 population from the Mass Transit Account of the Highway Trust Fund. Operating assistance for those urbanized areas that grew to be greater than 200,000 in population (such as the Boise urbanized area) or became part of a larger urbanized area is grandfathered in phases (allows 50% of the FY 2002 allocation to be used for operating assistance in FY 2006, 25% of the FY 2002 allocation in FY 2007, and completely phased out by FY 2008). A new Small Transit Intensive Cities formula was established for urbanized areas under 200,000 that provides more service per capita than do other comparable areas.

Section 5309. Provides funding through a discretionary grant program, (Table 12-3). Funds are not awarded under formula but must be sought in a competitive process—either through an administrative process with FTA or—more commonly—through a legislative process with the U.S. Congress determining the awards. Over the last several years, Idaho transit agencies, including those in the region, have been successful in obtaining up to $4 million per year to fund bus purchases, build bus facilities, provide preventive maintenance, purchase vanpool vehicles, build park-and-ride lots, and purchase other equipment. Section 5309 funds cannot be used for operational costs.

Section 5311. Provides capital and operating assistance for rural and small urban public transportation systems. Provides formula capital and operating grants to states for services in other-than-urbanized areas.

\(^{11}\) Urbanized Area (UZA) – Area that contains a city of 50,000 or more population plus incorporated surrounding areas meeting size or density criteria as defined by the U.S. Census.
Section 5310. Provides funding through a formula program to increase mobility for the elderly and persons with disabilities. Funds are allocated by formula to the states for capital costs of providing services to elderly persons and persons with disabilities. The Idaho Transportation Department awards these funds on a competitive basis each year.

Section 5316. Provides funding for local programs that offer job access and reverse commute services to provide transportation for low income individuals who may live in the city core and work in suburban locations. Formula allocations are based on the number of low-income persons, with 60% of funds going to designated recipients in areas with populations over 200,000, 20% of funds go to areas under 200,000, with 20% of funds for non-urbanized areas.

Section 5317 – Provides funding to encourage services and facility improvements to address transportation needs of persons with disabilities that go beyond those required by the Americans with Disabilities Act. Provides a new formula grant program for associated capital and operating costs. Funds are allocated through a formula based upon population of persons with disabilities. States and designated recipients must select grantees competitively. Projects must be included in a locally-developed human service transportation coordinated plan beginning in FY2007.

Section 5340 – Provides funding under New Growing States and High Density States Formula factors. One-half of the funds are made available under the Growing States factors and are apportioned by a formula based on state population forecasts for 15 years beyond the most recent US Bureau of the Census; amounts apportioned for each state are then distributed between urbanized areas and rural areas based on the ratio of urban/rural population within each state. The High Density States factors distribute the other half of the funds to states with population densities in excess of 370 people per square mile. These funds are apportioned only to urbanized areas within those states.

While federal funds for transit are important, they need to be kept in perspective. Although SAFETEA-LU provided a significant increase for public transportation programs in Idaho, the total federal transit funding is only 8% of the total federal funding available to roadways. Also, most systems rely on dedicated local or state funds for operating costs and for local match of federal capital funds. In part, this is due to recent (1998) federal rules that prohibit the use of federal funds to cover operating costs in urbanized areas greater than 200,000 in population. As of 2002, the Boise urbanized area was determined to be larger than 200,000.

In the U.S. in 2008, federal funds accounted for just 7% of the operating revenues for urbanized transit systems but accounted for 40% of the capital expenses.
Local funds accounted for 30% of the operating expenses and 47% of the capital expenses. State sources covered 26% of operating expenses and 12% of capital expenses. Fares covered 31% of operating expenses but 0% of capital expenses. The balance of costs were covered by “other,” which could be from sales of assets, refunds, lottery proceeds, etc. Of the $52.6 billion spent on urbanized area transit, 69% went to operating costs.

...the proceeds from the imposition of any tax on gasoline and like motor vehicle fuels ... and from any tax or fee for the registration of motor vehicles...shall be used exclusively for the construction, repair, maintenance and traffic supervision of the public highways of this state and the payment of the interest and principal of obligations incurred for said purposes; and no part of such revenues shall, by transfer of funds or otherwise, be diverted to any other purposes whatsoever.

- Idaho Constitution Art. VII

State-Collected Highway Funds

Federal funds are of great importance to transportation, but they are not the largest funding source. State-collected funds are the single largest source of funds for transportation. There are two categories of state-collected funds: Highway Distribution Account and state sales taxes distributed to local governments.

Highway Distribution Account

Established under the Idaho Constitution in 1941, the HDA is the state counterpart of the national Highway Trust Fund (Table 12-4). It has been a mainstay of roadway development and maintenance. An important aspect of the HDA is its constitutional restriction to roadway construction and maintenance—not general transportation.

The Idaho Constitution limits fuel taxes and vehicle registration fees to roadway purposes. Court tests of this restriction, more recently concerning use of gas taxes to remediate contamination by leaking underground tanks, have upheld this provision.

The fuel tax was last increased in 1996, when it was increased by 4 cents per gallon to its current level of 25 cents per gallon.

12 “National Transit Profile 2008,” National Transit Database, Federal Transit Administration.

Table 12-4: Highway Distribution Account Revenues and Expenditures
(in millions)

<table>
<thead>
<tr>
<th>Revenue Sources</th>
<th>2000</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Taxes</td>
<td>$201</td>
<td>$201</td>
<td>$209</td>
<td>$210</td>
<td>$213</td>
<td>$223</td>
<td>$219</td>
<td>$205</td>
</tr>
<tr>
<td>Other Fees/Taxes</td>
<td>$94</td>
<td>$91</td>
<td>$92</td>
<td>$99</td>
<td>$102</td>
<td>$108</td>
<td>$108</td>
<td>$106</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$295</td>
<td>$293</td>
<td>$301</td>
<td>$309</td>
<td>$315</td>
<td>$331</td>
<td>$327</td>
<td>$312</td>
</tr>
</tbody>
</table>

Distribution\(^{14}\)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Roads</td>
<td>$113</td>
<td>$111</td>
<td>$113</td>
<td>$117</td>
<td>$119</td>
<td>$127</td>
<td>$124</td>
<td>$118</td>
</tr>
<tr>
<td>Law Enforcement</td>
<td>$15</td>
<td>$15</td>
<td>$15</td>
<td>$15</td>
<td>$16</td>
<td>$17</td>
<td>$16</td>
<td>$16</td>
</tr>
<tr>
<td>ITD</td>
<td>$168</td>
<td>$166</td>
<td>$170</td>
<td>$175</td>
<td>$179</td>
<td>$189</td>
<td>$186</td>
<td>$178</td>
</tr>
</tbody>
</table>

Based on inflation since 1996, a 2005 study conducted on behalf of the Idaho Transportation Department’s Forum on Transportation Investment\(^{15}\) concluded that if Idaho had adjusted the 25 cents per gallon tax to reflect cost changes and increases in vehicle miles of travel, the fuel tax would need to be at least 38 cents per gallon in 2004 to have the same buying power it had in 1996.

As depicted in Figure 12-4, revenues of the HDA have been fairly flat during the past ten years. But while the revenue picture was flat, the cost of construction escalated a great deal. The cost of materials (steel, asphalt, concrete, etc.) was especially hard hit, with estimated increases of 13\% over 2004 prices.\(^{16}\) Rising energy prices and increased demand both at the national and international levels lead to the dramatic upswing in prices. Note that this same inflation affects the buying power of the Federal Trust Fund, also heavily reliant on a unit fuel tax. Note that prices slumped after 2006 and dropped significantly as the economy cooled off in early 2009.

\(^{14}\) Transit services not eligible for HAD distribution under Idaho Constitution.

\(^{15}\) Forum on Transportation Investment – a special committee set up by ITD to investigate future funding needs in transportation throughout the State of Idaho. URL: http://itd.idaho.gov/info/ti.forum/charter.htm

\(^{16}\) Buechner, William, American Road & Transportation Builders Association (ARTBA), November 15, 2005. URL: http://www.artba.org/economics_research/recent_statistics/prod_price_index/prod_price_index.htm
Figure 12-5 depicts the change in transportation construction prices since 1990.¹⁷

![Transportation Cost Indices (1996 = 100)](image)

Figure 12-5: Transportation Cost Inflation

While the HDA has been a remarkably stable source, improvements in fleet efficiency and changes in vehicle technology have affected its income stream. In addition, the use of a “unit tax” on fuel (a fixed number of pennies per gallon) and a fixed registration fee have degraded the buying power of the revenues. Figure 12-6 shows the revenues accruing to the HDA and its distribution (totals may differ due to rounding).

To put the HDA funds into perspective, the $312 million from HDA (2009) is greater than the federal highway and transit funds allocated to Idaho.

The reliance on the state fuel tax and its lack of growth over the past 10 years concerns ITD, which commissioned the Forum on Transportation Investment¹⁸ during 2005 to look at the long term financial prospects for transportation and to recommend options. Forum participants concluded “…that Idaho’s current transportation revenue structure will not meet the pressing transportation funding needs over the next thirty years. The forum found that no single revenue stream could be counted on to adequately address both state and local needs and all modes of transportation. In fact, the forum’s analysis found that multiple sources would be necessary to even come close to meeting funding requirements.”¹⁹

¹⁷ Source: Washington State Department of Transportation.
Other Sources of State Funding

The other source of funds collected and distributed by the state of Idaho for transportation is the sales tax. More than $20 billion in taxable sales and uses occurred in 2004: at the 6% sales tax rate in effect in 2009 over $1.2 billion in sales taxes were collected. This was down from $1.34 billion collected in 2008. In FY 2009, 11.50% of Idaho’s sales tax revenue was distributed to local governments. This was done through a complicated formula.\(^20\) This put almost $138 million into local government coffers. The sales tax revenues go into the general revenue of cities, counties, and highway districts. Unlike the HDA, sales tax distributions are not restricted as to use. They can be used for any public purpose authorized under Idaho law.

Local Highway Funds

The third broad source of transportation funds are those collected at the local level (Figure 12-7). Local funds are shown separated into roadway and transit funding categories.

Summary of Local Roadway Funding

Roadway revenues include:
- Property Taxes
- Impact Fees
- Registration Fees

Between 2004 and 2008, an average of $103.5 million was spent each year on local roads—roads not on the state highway system. Local funds are a significant portion of the revenues, constituting more than half the resources. State-generated funds account for another 37% of the funds, with federal sources amounting to just 4%.

Property tax. The single largest source of local funds is the property tax. As shown in Figure 12-7, property taxes made up 57% of the local road revenue base from 2004-2008. There is wide variation between counties, with Ada County (Ada County Highway District or ACHD) relying on property taxes for 53% of its local revenues, while Canyon County covers 71% of its local revenues with property taxes.

The mainstay for local governments in Idaho is the property tax. Even among taxes—never a popular topic—it has been a controversial revenue source, with multiple attempts by the legislature and citizen initiatives to remedy problems. A study by the Idaho Tax Commission using 2007 data concluded that, when compared to national averages (Figure 12-8), Idaho was almost 30% under the average in terms of property taxes as a percent of income. On the flip side, Idaho was 50% above the national average in terms of motor fuel taxes as percent of income.

Under current Idaho code, the property tax is one of the few tax resources available to local governments. No local option tax exists except for a specialized local option tax discussed below under registration fees and a very limited local option tax for resort cities in Idaho.

The amount of property tax that can be budgeted by each taxing district (a city, county, highway district, school district, or other entity legally empowered to levy a property tax) is limited under Idaho Code. This law generally limits an increase to no more than 3% of the previous year’s levy, not including any increase based on new construction or annexations. The law allows a larger increase if approved by a supermajority (more than 66.66%) of the voters.

The revenues raised by property taxes are a significant portion of all the roadway entities. Table 12-5 summarizes the property tax revenues used for roadways at the county level. Variations in property tax may be greater when the road functions are within a general purpose local government versus a stand-alone highway district.

22 Idaho Code Title 63, Revenue and Taxation, Chapter 8. Levy and Apportionment of Taxes. URL: http://www3.state.id.us/cgi-bin/newidst?sid=630080002.K
Impact fees. Impact fees are a relatively new revenue source, particularly in Idaho. Impact fees are assessed on specific new development, often at the time a building permit is issued. They must be tied by an analysis to a specific impact on transportation or some other public infrastructure. Legally, this tie is termed a “rational nexus.”

Existing deficiencies and on-going operations and maintenance costs are not eligible for impact fees—at least not in the eyes of the courts that have considered the legitimacy of impact fees. When properly implemented, impact fees can be an equitable and an effective way to fund capital needs—including new roads, widened roads, and other facilities—by identifying the need for these facilities as a result of growth. (Note that school facilities are not one of the eligible uses for impact fees.) Transit capital needs could be covered by impact fees if the Idaho Code (Section 67-8203(24)) were amended to list transit as an eligible expense.

Idaho Code\(^{23}\) defines the approach for impact fees in the state. It is a complex process. Among the requirements the law includes:

- Levels of service must be defined against which the developments may be considered.
- Individual assessments must be permitted under a defined process.
- Refunds must be made if the fees are not spent on eligible projects within eight years.
- Eligible projects must be defined in a capital improvement plan tied to a defined growth plan with a horizon no longer than twenty years.

\(^{23}\) Idaho Code Title 67, State Government and State Affairs. Chapter 82 Development Impact Fees. URL: http://www3.state.id.us/idstat/TOC/67082KTOC.html
It is this complexity that deters more jurisdictions from implementing impact fees. In the six county region of Communities in Motion, only ACHD has a portion of its revenues from impact fees, generating virtually 100% of the impact fees collected regionally between 2004 and 2008.

Over the past five years, impact fees accounted for 17% of ACHD’s revenue and generated 20% during its peak in 2005, when they totaled $14.5 million. In 2008, impact fees fell to $12.8 million, and ACHD’s 2010 budget showed only $6 million projected.²⁴

The power of this financial tool appeals to citizens, who frequently demand that “growth pay for itself.” Outside of Ada County, other cities and highway districts elect to use “exactions.” These are specific requirements put on a development and may include building roads, improving intersections, or other measures tied to specific impacts identified for a proposed development.

Registration fees. The state collects registration fees that help fund the Highway Distribution Account. Local governments also have a local option registration fee available under Idaho Code Title 40, Chapter 8. Any county can pass such a local option registration fee by a simple majority of the votes cast in an election, with the amount of the fee to be no more than twice the amount authorized statewide under Idaho law. As with the state-collected registration fee, the local option version can only be used for roadways.

Unlike the impact fee, a registration fee is fairly simple revenue to collect and manage. There is no requirement for a rational nexus, a 20-year capital improvement plan, or other features called for by the impact fee legislation. ACHD generated $19.8 million from 2004-2008—about 6% of its budget. In November 2008, voters approved a doubling of the registration fee, so this source will likely exceed impact fees until development rebounds. Canyon, Elmore and Gem Counties have also implemented such fees.

Geographic Distribution of Funding

The caution in presenting funding at a regional level is that dollars are not equally available by each jurisdiction. Of the total local dollars collected between 2004 and 2008, 77% were collected in Ada County. Ada County’s share of the regional population was 59% according to the U.S. Census Bureau. Ada County’s share of state funding from HDA and other sources amounted to 54% of the regional total from 2004-2008, so the difference in its resources is not attributable to flaws in the HDA distribution formula.

So what is the reason that ACHD has a higher percentage of the region’s locally derived funds? It lies in three areas:

• Implementation of impact fees
• Implementation of local option registration fees
• A diverse and valuable property tax base

²⁵ Idaho Code Title 63, Revenue and Taxation, Chapter 8. Levy and Apportionment of Taxes. URL:http://www3.state.id.us/cgi-bin/newidst?sctid=630080002.K
Note that ACHD does not require off-site road improvements any more from developers. These exactions were traded off in the early 1990s for the more equitable impact fee program. A few years later—and after two unsuccessful votes—ACHD obtained voter approval for a local option registration fee. Elimination of these two sources would represent as much as a $20 million cut in ACHD’s budget—about one-third of its local revenue collection. It should be noted that costs for roadway construction is substantially higher in Ada County due to high land values, difficult construction environments (high traffic and proximity of development), and urban standards such as sidewalks and bicycle lanes.

The other challenge is similar to that facing the HDA. The revenue base for regional local roads is not responsive to growth. Figure 12-9 depicts the total revenue base by county for local roads, so it includes local resources, state-generated funds, and federal funds. While the total revenue base has increased 25% since 2000, much of that increase was driven by local sources. State derived revenue only increased 17%, while federally derived revenue fell by 25%. (Note that this statistic does not include Idaho Transportation Department expenditures.) Declines in property values and impact fees will erode the revenue base for local agencies.

The 2006 plan noted the run-up in project costs. Major culprits were energy, asphalt, steel, and concrete—all elements in road construction. Cost of land needed for rights-of-way had increased far more dramatically with raw land prices through the Treasure Valley area nearing and, in many cases, exceeding $100,000 per acre. Note that many of these costs, especially land costs, have been reduced by the economic slump, but the question is whether a rebound in global, national, and local economies will trigger a resurgence in materials, labor and land costs.
Transit Funds

Transit revenues are shown separately from roadways since in Idaho there is no separate funding mechanism for transit. While road entities—city, county, or highway district—enjoy property tax powers, local vehicle registration fee options, and access to the Highway Distribution Account, the funding options for transit are more restricted:

- Farebox
- Federal funds
- Local government contributions
- Other (interest, advertising)

Farebox

Fares paid by transit riders once were either cash or tokens. While cash is still used, modern systems have moved from tokens to a variety of pass cards and even smart cards, which can be recharged via the Internet. These are much like a debit card to buy services on bus, rail, and ferry systems.

The bottom line is that whether cash, tokens, or smart cards are used, there are no transit systems in the U.S. which fund themselves 100% with fares. In 2008, U.S. transit services recovered 31% of their operating costs out of fares. Not surprisingly, larger systems serving 1 million or more persons had a higher recovery ratio at 35% than smaller regions which recovered around 18% on average. Heavy rail and commuter rail systems, generally operating in the very largest of cities, did best, recovering 61% and 47% of their costs, respectively. Light rail systems dropped to 26%--close to the 28% recovered in fixed-route bus systems. Demand responsive systems, which frequently are used for persons with disabilities, elderly passengers, and in very low density settings, recovered only about 10% of their costs through fares.

Larger systems do come closer to supporting themselves with fares: the catch is that their overall tax support is actually greater per capita than smaller systems with lower fare recovery.

Valley Regional Transit recovered 10-11% of its operating expenses between 2004 and 2008, which is not unusual for smaller regions. While its cost per service hour is fairly typical for cities of similar size, trips per service hour are about one-half of “peer” communities. Table 12-6 shows some statistics from mostly western metro areas ranging in size from 87,000 to 1.7 million. The larger areas would be more similar to this region when it is 1.046 million people. The region ranks at or near the bottom in most indicators.

Table 12-6: Service-Area Performance Statistics - Fiscal Year 2007\(^{27}\)

<table>
<thead>
<tr>
<th>#</th>
<th>Area</th>
<th>Population</th>
<th>Farebox Ratio *</th>
<th>Operating $ per Capita</th>
<th>Operating $ per Trip</th>
<th>Trips/ Capita</th>
<th>Revenue Hours/ Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iowa City, IA**</td>
<td>85,247</td>
<td>12.5%</td>
<td>$90.27</td>
<td>$1.41</td>
<td>64.0</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>Fort Collins, CO</td>
<td>118,652</td>
<td>14.4%</td>
<td>$64.56</td>
<td>$4.43</td>
<td>14.6</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>Abilene, TX</td>
<td>107,051</td>
<td>12.6%</td>
<td>$23.49</td>
<td>$4.22</td>
<td>5.6</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>Springfield, IL</td>
<td>132,100</td>
<td>9.3%</td>
<td>$65.07</td>
<td>$6.49</td>
<td>10.0</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>Topeka, KS</td>
<td>122,377</td>
<td>13.0%</td>
<td>$55.01</td>
<td>$3.93</td>
<td>14.0</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>Boise/Nampa, ID</td>
<td>272,625</td>
<td>11.3%</td>
<td>$29.80</td>
<td>$7.39</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>Salem, OR</td>
<td>206,500</td>
<td>10.1%</td>
<td>$128.14</td>
<td>$4.74</td>
<td>27.0</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Reno, NV</td>
<td>319,977</td>
<td>23.0%</td>
<td>$103.88</td>
<td>$3.66</td>
<td>28.4</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>Lincoln, NE</td>
<td>241,167</td>
<td>15.0%</td>
<td>$37.44</td>
<td>$4.83</td>
<td>7.8</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>Eugene, OR</td>
<td>272,272</td>
<td>16.7%</td>
<td>$119.87</td>
<td>$3.29</td>
<td>36.4</td>
<td>1.3</td>
</tr>
<tr>
<td>11</td>
<td>Stockton, CA</td>
<td>564,539</td>
<td>12.7%</td>
<td>$57.10</td>
<td>$8.12</td>
<td>7.0</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>Madison, WI</td>
<td>237,433</td>
<td>20.2%</td>
<td>$188.54</td>
<td>$3.46</td>
<td>54.6</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>Bakersfield, CA</td>
<td>437,236</td>
<td>21.7%</td>
<td>$44.41</td>
<td>$3.03</td>
<td>14.6</td>
<td>0.7</td>
</tr>
<tr>
<td>14</td>
<td>Lansing, MI</td>
<td>276,898</td>
<td>12.7%</td>
<td>$117.69</td>
<td>$3.05</td>
<td>38.6</td>
<td>1.4</td>
</tr>
<tr>
<td>15</td>
<td>Spokane, WA</td>
<td>334,857</td>
<td>13.2%</td>
<td>$151.06</td>
<td>$5.00</td>
<td>30.2</td>
<td>1.8</td>
</tr>
<tr>
<td>16</td>
<td>Tacoma, WA</td>
<td>732,435</td>
<td>16.0%</td>
<td>$130.46</td>
<td>$6.58</td>
<td>19.8</td>
<td>1.2</td>
</tr>
<tr>
<td>17</td>
<td>Albuquerque, NM</td>
<td>498,000</td>
<td>11.1%</td>
<td>$75.11</td>
<td>$3.90</td>
<td>19.2</td>
<td>0.8</td>
</tr>
<tr>
<td>18</td>
<td>Tucson, AZ</td>
<td>532,000</td>
<td>16.4%</td>
<td>$105.34</td>
<td>$3.08</td>
<td>34.2</td>
<td>1.5</td>
</tr>
<tr>
<td>19</td>
<td>Salt Lake City, UT</td>
<td>1,744,417</td>
<td>14.0%</td>
<td>$94.84</td>
<td>$4.00</td>
<td>23.7</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>Austin, TX</td>
<td>1,012,638</td>
<td>8.6%</td>
<td>$134.66</td>
<td>$4.01</td>
<td>33.6</td>
<td>1.4</td>
</tr>
<tr>
<td>21</td>
<td>Chattanooga, TN</td>
<td>155,554</td>
<td>25.6%</td>
<td>$87.31</td>
<td>$4.61</td>
<td>18.9</td>
<td>1.3</td>
</tr>
<tr>
<td>22</td>
<td>Portland, OR</td>
<td>1,253,502</td>
<td>22.9%</td>
<td>$269.99</td>
<td>$3.36</td>
<td>80.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>400,189</td>
<td>14.8%</td>
<td>$90.67</td>
<td>$4.44</td>
<td>24.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Federal Funds

Federal funds are made available to the region out of the Federal Transit Administration program. As noted above, these funds would amount to nearly $6 million per year for the region by 2009.

Note that the federal funds can be used to cover capital costs such as vehicle purchases, major maintenance, and facility construction. Federal funds also can be used for operating costs outside the designated urbanized area--western Canyon County and any services in Boise, Gem, Payette, or Elmore Counties.

In 1998, the federal rules were changed to not allow federal funds being used to cover operating costs in areas greater than 200,000 populations. Operating costs include drivers’, dispatchers’ and managers’ wages; fuel; insurance; utilities; marketing; and other non-capital expenses. Under the federal rules, funds under the Section 5307 program described above can be used to cover 50% of the operating losses—costs not covered by fares—within the Nampa/Caldwell area. If the operating costs were $1,000,000, and $200,000 in fares were collected, up to $400,000 of federal funds could be used to offset the operating loss. However, without a series of waivers to this rule, the Boise/Meridian urbanized area would not qualify to use federal funds for operating costs. The Nampa urbanized area is likely to be deemed part of the Boise/Nampa urbanized area in 2012, after the 2010 Census is analyzed. This means that the operating costs for bus services covering nearly 500,000 people will be ineligible for federal operating assistance. Continuing to provide the same level of service would require several million more dollars in local public funds.

Local Government Contributions

If fares do not cover the full costs of operating transit, where do the funds come from? For most areas, local funds are the main source of local match and operating expenses. As shown in Table 12-7, the urbanized area transit system received $5.3 million in local funds in 2008, mostly from the City of Boise.

Local governments can only provide funds for transit out of their general funds, which are based on property taxes, distributions from the state-collected sales tax, and miscellaneous fees. Since the general fund is also used to cover costs for police, fire protection, parks, libraries, and other government services, competition for the general fund is strong.

<table>
<thead>
<tr>
<th>Table 12-7: Sources of Funds – Valley Regional Transit Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fare Revenues</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Federal Assistance</td>
</tr>
<tr>
<td>Local Funds</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total Operating Funds</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fares as a Percent of Total Funds</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
How are Projects Budgeted?

A plan lays out a long-term vision of where the region is going—or perhaps could go—along with goals and strategies to get there. It is similar to a set of plans drawn up for the house discussed at the start of this chapter. The plan is implemented over the years in a series of programs that take the available funding and allocates them for specific projects. Think of a house that can be built in various stages; you would want the basics to be done early, say a kitchen, long before you might want to build a swimming pool.

Transportation program budgets are prepared every one to two years and maintain a five to six year horizon of projects keyed to priorities. Some of the key programming documents in this region are discussed below.

Transportation Improvement Program (TIP)

The TIP is required of metropolitan planning organizations (MPOs) under federal regulation. Any transportation project using federal funds or which is “regionally significant”28 must be included. No federal funds can be spent on these types of projects unless they are included in the TIP. A TIP is a major implementation tool for the plan, since any project in the TIP must be consistent with the adopted plan.

State Transportation Improvement Program (STIP)

State transportation agencies such as ITD must prepare a STIP, a document similar to the TIP but that covers statewide projects. Within the planning areas of each MPO, the STIP and TIP must mirror each other. That means that the projects included in each document must show the same scope and costs for each project. Neither document can contain a project not contained in the other. This coordination is essential to ensure that neither the MPO nor the state can force a project through without the other’s agreement.

Capital Improvement Program (CIP)

There are many projects that do not involve federal funding or occur on regionally significant corridors. Many transportation agencies, including cities, counties and highway districts, prepare CIPs that budget funds for street projects such as construction, widening, bridge reconstruction, traffic signals, roadway reconstruction, overlays, etc. A CIP is required by Idaho law in order to collect development impact fees, and has a time horizon of up to 20 years. Depending on its time horizon, a CIP may be either a mid-range or a long-range capital planning document. In the case of ACHD, its CIP serves as a long-range (20 years) planning document, while its Five Year Work Plan serves as a mid-range (7 year) planning document.

28 Regionally Significant - regionally significant projects involve new construction of or additional lanes of travel on principal arterials, expressways and freeways or fixed-guideway transit systems such as rail or bus rapid transit.
Transit Development Program

A Transit Development Program is the transit equivalent of a roadway CIP. It is more detailed than a 20-year plan and lays out a budget for implementing new services in accordance with the plan, programs for replacement and new vehicles and other equipment, and facility construction.

Cost of the Transportation System

Much of this chapter addresses the available resources for implementing transportation projects. While the pool of available dollars is certainly large, it needs to be viewed in the context of what it costs to build, operate, and maintain transportation systems. The funds shown in this chapter regarding the forecast from 2009 to 2035 are not totally available for major capacity projects. In fact, most of the resources for will go into maintenance and operations.

Roadways

With the deduction of minor capital items, including construction and widening of collector roads, signal projects, and intersection improvements, the available funding drops even more.

With construction, rights-of-way, structures and preliminary design, and studies, the total cost of the major corridors in Communities in Motion within Ada County and Canyon County was estimated at $2.63 billion. The cost of the corridors in the Partnering Counties totaled another $219 million, bringing the total roadway corridors tab to $2.85 billion—or $628 million more than the maximum amount of revenues available. Cost inflation since 2005 would raise the Ada and Canyon corridors to $3.13 billion (Figure 12-10).

The challenge across the next 25 years grows with inflation. As noted in the report, Funding Transportation Needs, many of the financing mechanisms for roadways are not inflation sensitive. With a 4% inflation rate assumed for most of the period between now and 2035, the deficit between revenues and roadway needs will grow. The cumulative deficit could be as high as $3.9 billion and will certainly be more than $2 billion. Total costs for state and local road maintenance, administration, and capital needs could near $10.1 billion across the next 25 years. Revenues for this period would total $6.2 billion.
The per capita expense within Ada and Canyon Counties on roadways is approximately $310 per person (2010). By 2020, if a fully funded roadway investment program were in place, this would rise to almost $500 per person. This compares with the $30 per capita spent on transit in Ada and Canyon Counties shown in Table 12-6.

This forecast of revenues is based on a number of assumptions. Perhaps the most critical concerns revenues based on gas taxes. The analysis “optimistically” assumed fuel consumption would increase at 0.9% per year—half the rate of growth seen over the past 20 years. It also assumed no increase in the federal or state gas tax rates of 18.3 and 25 cents per gallon. A gas tax rate set to automatically respond to inflation would be beneficial.

Transit

Transit costs for the “Optimal System” plan (Chapter 6) are also high, although still significantly less than the total roadway expenditures. One major difference is that capital costs are a comparatively small share of the overall expense unless investing in very expensive fixed-guideway (rail, bus rapid transit, etc.) facilities. Subways, common in the very largest cities, can cost hundreds of millions per mile—a cost only justified by the value of surface land and the congestion of the street system.

Capital costs for the optimal transit network were estimated at $1.36 billion to construct a fixed-guideway system along the Union Pacific corridor, a downtown circulator in Boise, a bus rapid transit system along State Street between downtown Eagle and downtown Boise, provide for bus expansion and replacement, and provide appropriate facilities such as maintenance garages, transfer centers, etc.

The operating cost of this system was estimated at $2.75 billion, assuming a ramping up of service over the next 25 years. At full implementation, the annual operating cost of the transit system would be $232 million by 2035. With capital costs that would be $313.11 million by 2035, compared to the base operating and capital cost of $60.06 million. (Figure 12-11).

Revenues will fall $2.66 billion short of funding the Optimal System over the next 25 years, and this is with the assumption that federal funding will be available to cover up to 80% of the capital costs.
A report by an official of the U.S. General Accounting Office in 2002 reviewed “…20 Bus Rapid Transit lines and 18 Light Rail lines and found Bus Rapid Transit capital costs averaged $13.5 million per mile for busways, $9.0 million per mile for buses on high occupancy vehicle (HOV) lanes, and $680,000 per mile for buses on city streets, when adjusted to 2000 dollars. For the 18 Light Rail lines, capital costs averaged about $34.8 million per mile, ranging from $12.4 million to $118.8 million per mile, when adjusted to 2000 dollars.”

What is the Shortfall and What Does it Mean for the Average Household?

While the above computation of total transportation costs and the shortfall between costs and revenues is important, numbers with many zeroes behind a dollar sign can be numbing. How does a $6.6 billion shortfall relate to the average household? When taken across 25 years and broken down by the number of households projected to exist in the region by 2035, the extra funding needed per household to invest in the planned roadway and transit networks would amount to another $98 million just to cover 2010 needs—about $430 per household in 2010.

This does not mean that $430 per year is painless for your household budget. Any expense is important. But it amounts to around $36 per month. It becomes a matter of priorities. How important is a better transportation system for the region?

What are Some of the Potential Revenue Sources that Could or Should be Considered?

There are options. While federal funds will continue to be a significant source of funding for regional transportation, as will state-collected gas and registration fees, funding collected in the region and under the control of local agencies could provide a major source of revenue over the next 25 years. There are several options presented in Table 12-8 for consideration. These are not intended to show all the options that might be done. Rather these are examples that are commonly used as local option taxes.

Table 12-8: Examples of Revenue Sources

<table>
<thead>
<tr>
<th>Tax/Fee Source</th>
<th>Current Legal Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit fuel tax</td>
<td>Roadway construction and maintenance</td>
</tr>
<tr>
<td>Sales Tax on Fuel</td>
<td>Potentially any transportation but needs legal review</td>
</tr>
<tr>
<td>Vehicle Registration Fee</td>
<td>Roadway construction and maintenance</td>
</tr>
<tr>
<td>Sales Tax on Goods</td>
<td>Any transportation</td>
</tr>
<tr>
<td>Income Tax</td>
<td>Any transportation</td>
</tr>
<tr>
<td>Property Tax</td>
<td>Any transportation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Sources</th>
<th>Current Legal Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Fees</td>
<td>Capital needs tied to effects of growth. Cannot be used for maintenance and operations, existing problems, or non-capacity improvements such as landscaping, drainage, etc. Under current Idaho law, cannot be used for transit.</td>
</tr>
<tr>
<td>Tolls</td>
<td>Typically limited to construction and maintenance of the specific facility, e.g., a tollroad. May need new state legislation.</td>
</tr>
<tr>
<td>Vehicle Miles of Travel Fees</td>
<td>To be a fee, the charge has to be tied to a specific benefit conferred upon the user. May need new state legislation.</td>
</tr>
<tr>
<td>Rental Cars Fees</td>
<td>Fee base is tied to use of transportation system. May need new state legislation.</td>
</tr>
</tbody>
</table>

Based on the $6.5 billion of unfunded investments, what would it take to add enough resources to pay for all the desired roadway corridors and invest in the transit network?

Table 12-9 provides examples of revenue sources and rates. The calculations are based on 2007 data available for fuel sales, sales tax collection, registered vehicles, home construction, and income.30

It is possible that, rather than just one of these sources being the total solution, that there would be a mix of sources used. Certainly increases in vehicle registration fees and gas taxes are more likely to accommodate roadway needs. The choice of what sources, if any, would be tapped is up to elected officials and voters. Rates were estimated for some of the more likely options.

30 Information was compiled from the State of Idaho and other sources in 2007. URL: http://www.compassidaho.org/documents/prodserv/ftp/taskforce_data.pdf
Table 12-9: Possible Sources to Raise $98 Million*

<table>
<thead>
<tr>
<th>Tax/Fee Source</th>
<th>Tax Type</th>
<th>Added Rate</th>
<th>Current Rate</th>
<th>Total Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit fuel tax</td>
<td>Fixed cents per gallon</td>
<td>$0.285</td>
<td>$0.245</td>
<td>$0.53</td>
</tr>
<tr>
<td>Sales Tax on Fuel</td>
<td>Percentage of Price (Less State/Federal Unit Tax)</td>
<td>12.0%</td>
<td>0.0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>Vehicle Registration Fee</td>
<td>Dollars per Vehicle</td>
<td>$205</td>
<td>up to $60 + $48 in Ada</td>
<td>up to $313</td>
</tr>
<tr>
<td>Sales Tax on Goods</td>
<td>Percentage of Price</td>
<td>1.7%</td>
<td>6.0%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Income Tax</td>
<td>Surcharge on Existing Tax</td>
<td>14.2%</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Property Tax</td>
<td>Percentage of Assessed Value</td>
<td>0.17%</td>
<td>0.09% ACHD</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11% CHD4</td>
<td></td>
</tr>
</tbody>
</table>

* This amount is for a single year. $98 million would cover the gap between existing revenues and the amount needed to fully fund maintenance and operations, new capital, and an expanded public transportation system. This revenue would be in addition to existing revenues for roadways and transit.

What Would it Take to Tap These Sources?

Any of the options, except for the impact fee and property tax, would require amendments to state law. Barring the provision of a local option registration fee noted earlier, Idaho law does not grant local option taxing powers to local governments. One exception is under Idaho Code, Title 50, Chapter 10. It allows cities with a population no greater than 10,000 and with a “major” portion of its economy dependent on tourism to submit to its voters a non-property local option tax.

The local option registration fee, which can only be used for roadway purposes, is also constrained to be no more than twice the amount established under Idaho Code,31 which currently establishes a maximum of $48 for newer vehicles. Furthermore, changes that would permit a gas or vehicle tax to be used for public transportation or other non-roadway transportation projects would require a change to the Idaho Constitution. However, an increase in the local option registration fee or a local option fuel tax could be sought to provide the added revenue for roadways.

31 Idaho Statutes, Title 49, Motor Vehicles, Chapter 4 49-402. Motor Vehicle Registration. URL: http://www3.state.id.us/cgi-bin/newidst?sectid=490040002.K
Local option, dedicated taxes for public transportation are not unusual in the U.S. Especially for transit systems in areas with more than 200,000, dedicated taxes are a larger source of funding than general revenues. In 2004, dedicated taxes formed 38% of the financial base for operating costs, versus just 14% for state and local general funds and 7% for federal funds. Where transit agencies had dedicated taxes, sales taxes accounted for 80% of the revenues. Where other local governments collected the dedicated taxes, sales taxes were 67% of the revenue. (Source: National Transit Database 2004.) Other dedicated tax sources included property, income, fuel, and other.

To accomplish this will take enabling legislation approved by the Idaho Legislature or by a direct initiative process. The challenge is a long-standing concern about the effects of a local option tax on the market. Some of the arguments in opposition to a local option tax are:

- Sales taxes collected in the larger urban areas likely to approve a local option tax for transportation would also be borne by residents of more rural areas who shop in the larger metropolitan areas.
- Local option taxes might drive buyers to shop in areas outside the taxing district. This could be especially difficult where the taxing district borders states with no sales tax or lower tax rates.
- Businesses could face additional administrative costs to track tax collections by special districts.

It is likely that any enabling legislation would require a vote of approval by residents within the district. This is the case with the resort tax under Idaho Code 50-10. Under that legislation, a simple majority is sufficient to approve a local option tax. In many states, any local option tax must be preceded by a capital and operations plan that will provide voters with some assurance as to how the funds will be spent.

In 2007, COMPASS and Valley Regional Transit worked with local governments and private organizations across Idaho to craft local option tax legislation. A coalition, Moving Idaho Forward, backed legislation introduced in the 2008 session. The Idaho House leadership wanted provisions in local option to require a constitutional change requiring a two-thirds vote to pass a local option tax. This provision, along with other restrictions, and concerns about the restrictions voiced by local governments resulted in the legislation being killed in committee. No new legislation was attempted in the 2009 or 2010 sessions.
This page intentionally blank.
CHAPTER 13

FOSTERING SUSTAINABILITY AND LIVABILITY

The Communities in Motion plan of 2006 included the following goals, carried forward in this update:

- **Connections**
 - Provide options for safe access and mobility in a cost-effective manner in the region.

- **Coordination**
 - Achieve better inter-jurisdictional coordination of transportation and land use planning.

- **Environment**
 - Minimize transportation impact to people, cultural resources, and the environment.

- **Information**
 - Coordinate data gathering and dispense better information.

Communities in Motion also highlights the following guiding principles for land use:

- **Plan for growth and share in benefits and costs**
- **Facilitate growth in cities and areas of impact to efficiently use public infrastructure**
- **Promote economic vitality and housing choices for all residents while retaining natural beauty**
- **Support a successful central city to maintain regional economic health and vitality**
- **Coordinate transportation and land use decisions to support travel choices**

While the 2006 plan stopped short of discussing how these goals and principles tie to sustainability and livability, they have guided member agencies and the region toward steps in that direction. For example, many of the updated comprehensive plans are embracing sustainability and livability as their core values, and the annual Communities in Motion Performance Monitoring Report tracks progress toward the above goals. This updated plan more explicitly ties Communities in Motion goals and guiding principles to sustainability and livability.

Sustainable Communities Initiative

In June 2009, the U.S. Department of Housing and Urban Development (HUD), U.S. Department of Transportation (DOT), and the U.S. Environmental Protection Agency (EPA) joined together to design the Partnership for Sustainable Communities. The goal of the program is to support multi-jurisdictional regional efforts that integrate housing, economic development, transportation, water infrastructure, and environmental planning, and assist regional entities and consortia of local governments with integrated decision-making.
The resulting “Sustainable Communities Initiative” is based on the six “Livability Principles” listed below. The goals and guiding principles reflect these livability principles.

1. Provide more transportation choices
2. Promote equitable, affordable housing
3. Increase economic competitiveness
4. Support existing communities
5. Leverage federal investment
6. Value communities and neighborhoods

Provide More Transportation Choices

The region has engaged in a broad-based planning effort to identify needs and gaps in transportation services throughout a six-county area, with specific emphasis on people who do not drive a car (Chapter 6). The plan also prioritized strategies to meet the needs and to seek funding for implementation. The COMPASS Board adopted a Complete Streets policy to better enable consideration of all transportation modes and users’ needs.

Promote Equitable, Affordable Housing

While the connection between housing density and transportation choices has been addressed in regional plans, this update represents a new partnership between housing agencies and the regional transportation planning agency. COMPASS has documented the effect of transportation cost (due to distance from employment) on housing affordability. That information provides a powerful tool to coordinate housing and economic development (job centers) with the need for affordable housing and transportation (Chapter 4).

Enhance Economic Competitiveness

The new focus on connecting housing, jobs, and transportation choices creates economic opportunities and helps address some of the region’s shortcomings in terms of economic competitiveness. One of the factors businesses look at when they consider locations is the quality and extent of public transportation. A future growth pattern that brings homes, jobs, and services closer together will reduce the need to travel and encourage use of alternative travel modes such as walking and biking.

Support Existing Communities

The Community Choices land use scenario supports growth in areas of city impact and thereby helps reduce the need to consume farmland and open space (Chapter 3). It also encourages a greater diversity of housing and puts more of that housing near jobs and services. More townhomes, patio homes, and apartments will be provided near planned public transportation services.
Community Choices is a more compact growth pattern that will more likely support transit, walking, and biking. Some of the increased density would occur from the greater diversity of housing types, but some would also come from decreased lot sizes for single-family housing. Lots of less than 5,000 square feet can attain the needed density with more careful design.

Coordinate Policies and Leverage Investment

One example of the coordination is the regional effort in mobility management to help leverage investment in transportation services and infrastructure by human service providers and transportation providers (Chapter 6). This effort started in early 2000s and resulted in the first *Transportation Service Coordination Plan*, adopted by Valley Regional Transit in 2006. This effort has since continued as part of the regional local mobility planning effort undertaken by COMPASS for the *Southwest Idaho Mobility Management Plan*.1

The partnerships formed during this *Communities in Motion* update provide an opportunity to expand coordination into sustainability, livability, housing, and other infrastructure investment.

Value Communities and Neighborhoods

The Community Choices land use scenario emphasizes a more compact development with design elements that favor expanded effectiveness of public transportation, walking, and biking, and is identified as the targeted scenario for implementation through this plan (Chapter 3). Growth occurring outside the targeted growth areas under Community Choices will not be a priority for public funding of transportation projects.

Developing a Sustainable, Livable Region

The graphic on the following pages (Figure 13-1) illustrates the types of coordination needed to bring about a truly sustainable, livable community. COMPASS is already working with many of the organizations listed and plans to engage others to continue to improve the regional planning process.

1 http://www.compassidaho.org/documents/prodserv/reports/3CLMMNPlanSep%202009.pdf
http://www.compassidaho.org/documents/prodserv/reports/3CLMMNPlanAppendices.pdf
Regional sustainability requires a concerted effort from many agencies and organizations working collaboratively. Sustainability involves natural resources, health and social services, land use, housing, transportation, economic development, infrastructure, and public and private partners.

This illustration is an example of how several participants are needed to create a livable community.

Natural Resources/Agricultural Land
- City/county parks departments
- Idaho Conservation League
- Idaho Department of Environmental Quality
- Idaho Department of Fish and Game
- Idaho Department of Lands
- Idaho Department of Water Resources
- Idaho Green Building Council
- Natural Resource Conservation Service
- Land Trust of the Treasure Valley
- U.S. Bureau of Land Management
- U.S. Department of Agriculture
- U.S. Environmental Protection Agency
- Idaho Green Building Council
- Idaho Department of Water Resources
- Idaho Department of Fish and Game
- City/county parks departments
- Idaho Conservation League
- Idaho Department of Environmental Quality
- Idaho Department of Fish and Game
- Idaho Department of Lands
- Idaho Department of Water Resources
- Idaho Green Building Council
- Natural Resource Conservation Service
- Land Trust of the Treasure Valley
- U.S. Bureau of Land Management
- U.S. Department of Agriculture
- U.S. Environmental Protection Agency

Health and Social Services
- AARP
- Faith-based charities
- Health districts
- Hospitals
- Refugee organizations
- School districts
- Women and children agencies

Public and Private Partners
- Builders/Building Contractors Association of SW Idaho
- Media
- Neighborhood and home owner associations
- Realtors

Housing
- Homeless shelters
- Idaho Housing and Finance Association
- Idaho Smart Growth
- Local housing authorities
- U.S. Dept of Housing and Urban Development

Transportation
- COMPASS
- Federal Highway Administration
- Federal Transit Administration
- Highway districts
- Idaho Transportation Department
- Private transportation providers
- Safe Routes to School
- Valley Regional Transit

Economic Development
- Boise Valley Economic Partnership
- Chambers of commerce
- Colleges and universities
- Idaho Department of Commerce
- Idaho Department of Labor
- Idaho Rural Partnership
- Redevelopment agencies
- Sage Community Resources

Land Use
- All cities and counties
- Idaho Smart Growth
- Urban Land Institute

Infrastructure
- Idaho Green Building Council
- Irrigation districts
- U.S. Army Corps of Engineers
- Utilities

Disclaimer: Graphic is an illustration of the variety of organizations needed to collaborate in a sustainable plan. Not all organizations are reflected.
CHAPTER 14
LOOKING BEYOND 2035

Setting the Stage

The federal government requires the life of a regional long-range transportation plan be a minimum of 20 years. Communities in Motion was given a horizon year of 2035—25 years beyond the adoption date in 2010. But growth is not likely to stop in 2035. In fact, growth could be much stronger than anticipated through 2035 and the resulting population and employment numbers could be much larger than assumed in the plan. The rate of growth is not absolutely predictable. The region went through a major boom between 2000 and 2006, followed by a major slump that is still going on at the time of this plan. No one can really know the future, and this lack of certainty requires that the plan consider many possibilities.

Many larger regions now conduct longer-term forecasts and evaluations. Seattle, Portland, Sacramento, and Salt Lake are among the metropolitan areas extending their horizons. A 40 or 50-year horizon is used to test transportation systems, while a shorter 20-year plan contains more detail about projects and their priorities.

Why take the longer view? A 20-year plan seems distant, but it is short when considering urban growth and transportation system changes. A significant road widening project may take ten or more years to complete, while a major new corridor – such as a new freeway or rail system – can be 10 to 20 years in planning and construction. Land use patterns and travel behavior can take far longer to change. The private automobile has been the dominant mode of urban transportation for three generations.

Designing for the automobile has driven urban form in the Treasure Valley since World War II. Roads, parking lots, and garages dominate the urban image. Look at a regional shopping center and its acres and acres of asphalt. Consider the amount of frontage on a home dedicated to the car.

The 50-year time horizon in the scenario process is necessary, in order to see significant effects from land use policies and from transit-building policies, too. The fact that MPOs do 20-year plans biases them against such policies.

Robert Johnson
University of California, Davis
The intent of a longer-term analysis is to put the recommendations of *Communities in Motion* into perspective. Road corridor and public transportation investments that may be seen as unnecessary in terms of growth within the next 25 years could be vital to accommodate growth beyond that period. Also consider that forecasts can be wrong.

Growth Beyond 2035

The growth envisioned in *Communities in Motion* would add 460,000 residents to Ada and Canyon Counties. Employment is expected to increase by 222,000. The two counties would have 1.046 million residents and 470,661 jobs.

In the 2006 plan, growth was projected in a straight-line fashion beyond 2030 to achieve a population within Ada County and Canyon County of approximately 1.5 million and a regional population (including Boise, Elmore, Gem and Payette Counties) of nearly 1.8 million. Employment growth was also projected to achieve a two-county total of 852,000 and a regional total of 960,000.

Was it far-fetched to consider 1.5 million people in Ada and Canyon Counties? Depending on the future economy, that number may not be far off. The 1.046 million population by 2035 used in *Communities in Motion* is based on an annual growth rate of 2.5%, a heavy pace of growth compared to the national growth rate of 0.75%. Another 15 years at that rate would see a two county population of 1.5 million.

Buildout Implications

For the 2010 plan, a different approach was taken. Instead of using a growth rate to look at a long-term population, COMPASS staff worked with local land use agencies in Ada and Canyon Counties to analyze their comprehensive plans to determine the amount of growth that would be possible under their collective plans. The comprehensive plans were mapped (Figure 14-1), and assumed densities under each land use category, by jurisdiction, were put into the model. Information on existing development, vacant land, floodways/floodplains, slopes, farmland, wildlife habitat, and other factors was used to determine the limitations on growth. For example, if the comprehensive plan for City X called for higher residential density than currently exists, would City X expect redevelopment to occur? This compilation of area comprehensive plans is titled the “Buildout Analysis” and is intended to inform long-term planning efforts for roads, transit, and other modes. See Appendix F for additional information about local comprehensive plans used in the analysis.
Figure 14-1: Buildout Analysis Land Use Map
These “buildout” projections come with limitations:

- The growth forecasts were modeled in the Community Choices roadway and transit networks at full build-out. The process assumes that the entire network would be built and not constrained by available resources. No attempt was made to modify the Community Choices network in response to additional travel demand.
- No forecasted travel information was available for the neighboring counties (Boise, Gem, Payette, Elmore).
- No fuel prices or other cost factors were assessed to determine the effects of such prices on growth patterns or travel demands.
- There are no limits to the build-out growth based on limitations posed by water, sewer capacity, energy supplies, or any other factor.
- There is no time limit to this growth. For the Community Choices scenario the horizon is the year 2035. There is no expected year when the growth would match the visions of the comprehensive plans. It could be 100 years or more.

The Buildout Analysis, given the assumptions and limitations, would result in the following:

- 2.6 million population
- 0.9 million households
- 1.4 million jobs

Implications of the Buildout Analysis for the Transportation System

The Buildout Analysis was originally conceived as a way to relate growth in the plans to available transportation capacity. A typical statistic used in transportation plans is “vehicle miles of travel” (Figure 14-2). It is a significant statistic since it closely correlates with issues such as air pollution due to vehicles, consumption of fuel, and travel delays. Under buildout, there could be approximately 79 million vehicle miles of travel per weekday compared with the current 12 million. The challenge with evaluating this magnitude of demand is that there is simply not enough supply even assuming a fully funded Communities in Motion plan plus two additional major corridors – Western Canyon County Arterial Route and Kuna-Mora Road Expressway. This was the network used for evaluating buildout.
Although the extrapolation of growth beyond 2035 is not a sophisticated scenario of future growth, the implications of continued growth without a fundamental change in travel modes and investments are daunting. The evaluation is based on typical weekday travel in the Year X – a year which could be 70, 80, or more years in the future. Some of the highlights of the initial evaluation:

- The average speed on Inerstate-84 would be approximately 15 mph.
- Sections of I-84 would carry over 350,000 vehicles per day compared to today’s peak of 120,000 vehicles per day.
- State Highway 19, west of Caldwell, would serve over 140,000 vehicle trips per day.
- 60% of the vehicle miles of travel would be on non-state roads.
- There would be over 3.4 million hours of vehicle delay per weekday. Today’s delay is 27,000 hours (Figure 14-3).

Delay is calculated by estimating the “free flow” travel time for a trip and comparing it to the time needed under congested conditions.

Generally these congested conditions would be worst during peak hours. As travel demand increases, more and more travel will shift outside the “typical” peak hours of 7:00 a.m. to 8:00 a.m. and 5:00 p.m. to 6:00 p.m. In larger metropolitan areas, the travel demand spreads out as travelers seek to shorten their commute times by starting their trips outside the peak hours. In these larger areas, peak hours are likely to last two to four hours during the evening. This is called “peak spreading” and is similar to a market approach in balancing demand and supply. Think of airline travel pricing, where tickets for travel outside of peak demand times cost less than at peak times such as holidays. Travelers see the advantages and adjust their travel patterns.

The increase in hours of delay is much greater than the increase in vehicle miles of travel since roadway capacity is being consumed, and congestion is not a linear function. As roadway capacities are exceeded, each new vehicle added generates higher levels of delay. Think of vehicles entering a freeway late at night. Due to the low traffic volumes, the effect on traffic flow is slight. Now think of the same number of vehicles entering at the same point on the freeway at 5:15 p.m. During rush hour, only a slight number of additional vehicles need to change slow moving traffic into traffic that is stopped.

Figure 14-4 shows I-84 at a typical mid-day traffic level and a morning peak level. The morning peak under the Buildout Analysis would stretch for three hours.
Figure 14-4: I-84 Traffic Levels: Mid-Day on Left; Morning Peak on Right

Increases in vehicle miles of travel, hours of delay, and percentages of roadway system over capacity are interesting numbers—at least to transportation professionals. But what do they mean to the average driver in the region? Many can identify with a very simple statistic, “How long will it take me to make my trip in the future?” While there are a very large number of possible trips for regional residents, the analysis picked four common origin-destination pairs, as described below:

- It would take over 1 hour 40 minutes to drive between Caldwell and downtown Boise.
- It would take over 1 hour to drive between Nampa and the Boise Airport.
- It would take almost 1 hour 30 minutes to drive between Middleton and Hewlett-Packard.
- It would take almost 40 minutes to drive between north Meridian and Boise Towne Square Mall.
Figure 14-5 shows the congested corridors under the Buildout Analysis. Every major road shown in red has an average daily speed less than 20 mph. Peak speeds will be much lower.

Figure 14-5: Buildout Analysis on Full Communities in Motion Network (Funded and Unfunded). Roads with Average Daily Speeds < 20 mph.

With most roads at or above capacity, widening existing roads even more than proposed in Communities in Motion would mean substantial financial costs and cause impacts on the adjacent residences, businesses, and other uses. Area residents need to consider how far we should go in providing for auto mobility at the expense of neighborhoods, rural land, and existing businesses.

These are not absolute forecasts. The evaluation has not yet factored in the contributions of a greatly expanded public transportation system. It does not assume any revolution in vehicle technology, such as automated highways and vehicles that would greatly increase travel efficiency. Nor are there any radical economic or social changes assumed that would keep people from driving personal vehicles. For example, what would happen if the 2008 gas prices had remained at $4 per gallon or higher?
What the evaluation does indicate is that the potential under the existing comprehensive plans is far in excess of any budgeted or planned roadway capacity. One approach could be to evaluate the full functional classification system, assuming that all roads would be built out to their maximum number of lanes envisioned in the policy/design manuals. Another approach would be to develop an optimal transit network appropriate for a region of 2.6 million people. Even with these in place, it is possible—likely—that demand is so high as to be intolerable. For example, sections of State Highway 44 are forecasted with more than 100,000 vehicles per day, yet there are no options for east-west travel north of the river. So tests could be run on new corridors outside of the functional classification system.

The potential of looking beyond 2035 indicates the need to:

- Offer alternatives to driving
- Move toward a development pattern that reduces the need to travel
- Preserve future corridors not yet warranted for construction under growth by 2035. This is a major reason for the functional classification map included in Chapter 5.

Comparisons to Other Communities

The potential travel issues are significant, yet they should not be viewed as catastrophic. While 2.6 million is a large population, there are many cities in the west and southwest approaching or over 1 million that are economically vital and maintain a desirable quality of life. These cities have higher congestion than the Treasure Valley. They also put significant money into roadways and transit. All have rail systems. Las Vegas, Nevada’s, system is privately-owned, oriented for visitors, and has an extensive bus system in place. In 2004, these communities spent between $188 and $972 per household on transit operations and maintenance and capital investments such as rail systems. This puts the $400 per household in new revenue for implementing the road and transit networks in this region as described in Chapters 5 and 6 into perspective. Also consider that the average per household roadway expenditure alone for these regions ranges from $634 to $1,505 (Table 14-1).
The Next Plan

Communities in Motion will be updated by September 2014, to meet the four-year update cycle mandated by the Federal Transportation Act, Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). COMPASS may update it sooner, and it will most certainly be amended before the four years are up. As noted in Chapter 3, COMPASS prepares an annual Communities in Motion Performance Monitoring Report. This report will track growth, transportation investments, transportation performance and policy changes tied to the goals and objectives espoused in Communities in Motion.

The next update will reprise the detailed analysis of land use options that was undertaken for Communities in Motion in 2006, but it will need to address whether land use patterns are shifting to reflect more of the higher density, mixed use developments called for in this plan.

The update will also need to evaluate the pace of development, especially in smaller cities that can see rapid increases in building and subdivision activity. Is the 2.5% growth rate used in developing a 2035 population of 1.046 million for Ada County and Canyon County valid—or has it been exceeded year after year?

Table 14-1: Expenditure Comparison with Other Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Annual Transit Expense</th>
<th>Transit Expenditures per Household</th>
<th>Annual Regional Plan Expenditures on Roadways</th>
<th>Roadway Expenditures per Household</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose, California</td>
<td>1,731,400</td>
<td>$520,012,617</td>
<td>$972</td>
<td>$1,680,000,000</td>
<td>$634</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>727,000</td>
<td>$143,978,488</td>
<td>$525</td>
<td>$640,160,000</td>
<td>$1,125</td>
</tr>
<tr>
<td>Denver, Colorado</td>
<td>2,545,000</td>
<td>$484,848,233</td>
<td>$490</td>
<td>$1,557,520,000</td>
<td>$1,505</td>
</tr>
<tr>
<td>Las Vegas, Nevada</td>
<td>1,686,827</td>
<td>$119,262,312</td>
<td>$188</td>
<td>$463,760,000</td>
<td>$660</td>
</tr>
<tr>
<td>Sacramento, California</td>
<td>1,035,009</td>
<td>$289,957,034</td>
<td>$757</td>
<td>$796,571,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>1,744,417</td>
<td>$168,852,111</td>
<td>$299</td>
<td>$758,154,000</td>
<td>$1,383</td>
</tr>
</tbody>
</table>

2 Table 1 – Annual Transit Expenditure. ibid
3 Table 1 – Annual Transit Expenditures per Household. Census household sizes for the urbanized areas were used to estimate number of households.
4 Table 1 – Annual Roadway Expenditure. Expenditures based on average annual roadway investments derived from the respective regional transportation plans. Includes all capital and operating/maintenance expenses for state and local roads. The total investment costs were divided by the number of years covered in each plan.
We need to better understand what drives growth in the region and need to consider:

- How strong is the tie between job creation and population growth?

- To what extent will this region see growth as a result of retirees attracted by a favorable climate, outdoor amenities, affordable housing (compared to some regions), and other qualities?

- How attractive is the region to younger adults? Will they be seeking a suburban environment or a more diversified urban environment?

- What is the relationship between the pace of housing development and out-of-area speculation? The boom from 2000 to 2006 owed a great deal to such speculation. An analysis by the Ada County Assessor’s office determined that non-owner occupied single family homes went from 22% of the total stock to 28% between 2004 and 2006. That represented an increase of 10,000 single family homes not owner-occupied. During those same two years, 13,000 single family homes were built in Ada County.5

- Will energy costs begin to affect residential location decisions and choices between driving and other modes?

- How will raw land prices affect development patterns if prices escalate as they did during the boom years?

- Will more employment, especially in terms of retail and services, move into areas undergoing booms in residential construction? Conversely, will residential construction booms near the urban centers increase as has occurred in other metropolitan areas?

- What is the support for expanding the revenue base for public transportation?

- How does the region balance roadway design, traffic growth, and community goals for neighborhood protection and downtown vitality?

5 The analysis looked at homes for which a home owner exemption was in place. Homes not qualifying for such an exemption would be homes rented out, homes owned by out of state residents, builder or bank owned homes, and second homes not used as a primary residence by the owner.
In Sum

A plan is not a solution in itself. Rather it offers a destination and a broad set of instructions on how to get there. During three years of Communities in Motion public outreach sessions, residents told us loud and clear that they want change in the way this region grows. The intent is to create a future in which there is:

- Open space
- Well-defined communities
- A choice of housing
- Effective public transportation
- Better options for walking and biking

To reach these goals involves investing in transportation, considering the design of our transportation systems, and integrating transportation and land use decisions. The adoption of Communities in Motion is not our destination; it is the start of our journey.