Table of Contents

Chapter 1: General Transportation Issues ... 1

Introduction .. 3

Issues Addressed in This Chapter ... 3

What Is Destination 2025? ... 4

Purpose and Need .. 6

Who Is Responsible for the Plan? .. 7

Vision Statements .. 8

Level of Service ... 9

New Mitigation Standards ... 9

Integration with Local Comprehensive Plans ... 10

Chapters in Destination 2025 .. 13

Chapter 1 – General Transportation Issues ... 13

Chapter 2 – Public Involvement .. 13

Chapter 3 – Travel Forecasts .. 13

Chapter 4 – Street Classification System .. 13

Chapter 5 – Major Roadway Projects .. 13

Chapter 6 – Environmental Effects of Recommended Roadway System 13

Chapter 7 – Alternative Transportation .. 14

Chapter 8 – Ridge-to-Rivers Pathways Plan ... 14

Chapter 9 – Freight/Goods Movement .. 14

Chapter 10 – Enhancement Needs ... 14

Key Transportation Planning Issues ... 15

Access to Work, Shopping, Services .. 15

Vehicle Miles of Travel Increase .. 15

Safety for Motorists, Bicyclists and Pedestrians .. 15

Congestion and Delay .. 15

Neighborhood Quality .. 15

Financing .. 15

Public Choices .. 15

Land Use and Transportation ... 16

Air Quality ... 16

Maintenance of the Existing System ... 16

Corridor Preservation ... 16

Federal Issues ... 17

Implementation of the Plan .. 18

Transportation Improvement Program ... 18

The Transit Development Program ... 18
Unified Planning Work Program/Budget ... 18

Data Used for Destination 2025 .. 19

Population and Employment .. 19
Ada County Demographics ... 22
Auto ownership ... 22
Labor Force Participation and Size of Households ... 22
Age and Disability ... 22
Minorities Population ... 23

Existing Travel Behavior .. 24

Means of Commuting ... 24
Time of Day Travel ... 24
Intercounty Travel Patterns .. 25

Intelligent Transportation System (ITS) .. 27

What is Intelligent Transportation System? ... 27
Background Work ... 27
Recommendations of the Treasure Valley Intelligent Transportation System Plans ... 27

In Conclusion ... 28

General Transportation Policies .. 29

Chapter 2: Public Involvement .. 31

Introduction .. 33

Issues Addressed in This Chapter .. 33

Public Involvement in the 2025 Process .. 34

Participating Groups and Their Roles ... 35

Public Involvement Policies ... 37

Chapter 3: Travel Demand Forecast Model .. 39

Introduction .. 41

Issues Addressed in This Chapter .. 41

How the Model Works .. 42

How Model Results Are Used ... 43

Model Inputs ... 43

Alternative Transportation Modes ... 44

Model Output .. 44

Travel Forecast Policies .. 45

Chapter 4: Preservation of Transportation Corridors 47

Introduction .. 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues Addressed in This Chapter</td>
<td>49</td>
</tr>
<tr>
<td>Functional Street Classification</td>
<td>50</td>
</tr>
<tr>
<td>Street Classification</td>
<td>50</td>
</tr>
<tr>
<td>How to Use the Functional Classification Maps</td>
<td>51</td>
</tr>
<tr>
<td>Collector Designations</td>
<td>60</td>
</tr>
<tr>
<td>Preservation of Major Intersections</td>
<td>61</td>
</tr>
<tr>
<td>Transportation Projects for Preservation</td>
<td>63</td>
</tr>
<tr>
<td>Proposed Studies</td>
<td>64</td>
</tr>
<tr>
<td>South Treasure Valley Arterial Corridor Study</td>
<td>64</td>
</tr>
<tr>
<td>State Street Corridor Study</td>
<td>64</td>
</tr>
<tr>
<td>Collector Evaluations</td>
<td>64</td>
</tr>
<tr>
<td>Street Classification System Policies</td>
<td>66</td>
</tr>
<tr>
<td>Chapter 5: Major Roadway Projects</td>
<td>69</td>
</tr>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Issues Addressed in This Chapter</td>
<td>71</td>
</tr>
<tr>
<td>Committed Projects</td>
<td>72</td>
</tr>
<tr>
<td>Recommended Projects</td>
<td>73</td>
</tr>
<tr>
<td>How Projects Were Selected</td>
<td>73</td>
</tr>
<tr>
<td>Roadway Projects</td>
<td>73</td>
</tr>
<tr>
<td>Funding Needs and Potential Resources</td>
<td>82</td>
</tr>
<tr>
<td>Major Roadway Projects Policies</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 6: Environmental Issues</td>
<td>85</td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Key Environmental Issues</td>
<td>88</td>
</tr>
<tr>
<td>Conformance with Air Quality Regulations</td>
<td>88</td>
</tr>
<tr>
<td>Traffic Noise Levels</td>
<td>90</td>
</tr>
<tr>
<td>Inventory of Environmental Issues along Recommended Construction Project</td>
<td></td>
</tr>
<tr>
<td>Corridors</td>
<td></td>
</tr>
<tr>
<td>Waterways and Wetlands</td>
<td>94</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>94</td>
</tr>
<tr>
<td>Historic and Archeological Resources</td>
<td>95</td>
</tr>
<tr>
<td>Hazardous Areas</td>
<td>96</td>
</tr>
<tr>
<td>Environmental Evaluation Summary</td>
<td>97</td>
</tr>
<tr>
<td>Environmental Issues Policies</td>
<td>102</td>
</tr>
</tbody>
</table>
Chapter 7: Public Transportation .. 103

Introduction .. 105
Issues Addressed in This Chapter ... 105
Regional Transportation Planning Area 106
Public Transportation Programs and Planning Efforts 107
Regional Public Transportation Authority 107
Treasure Valley Alternative Transportation Analysis 108
I-84 Study .. 108
Funding Issues .. 108
Other Potential Sources-National Examples 110
Americans with Disabilities Act of 1990 112
Services in Ada County ... 113
Boise Urban Stages ... 113
Commuteride Program ... 115
Commuters Bus, Inc. .. 117
Treasure Valley Metro ... 117
Taxicabs .. 118
Senior Center Vans ... 118
Public Transportation Needs .. 119
Treasure Valley Transportation Analysis 119
Transit Development Plan ... 120
I-84 Study (Public Transportation Related Recommendations) .. 123
Rail Corridor Evaluation ... 124
Alternative Public Transportation Policies 125
Key Issues .. 125

Chapter 8: Ridge-to-Rivers Pathways Plan 127

Introduction .. 129
Issues Addressed in This Chapter ... 129
Progress of Pathways Plan ... 130
Funding Status ... 131
Funding for Staff Positions ... 131
Other Funding ... 131
Pathway Policies .. 133
Plan Updates ... 133
On-Street Pathways ... 133
Multiple-Use Paths ... 133
Multiple-Use Trails ... 134
Table of Contents

Funding .. 134

Chapter 9: Urban Goods Movement ... 135

 Introduction .. 137
 Issues Addressed in this Chapter ... 137

Boise Air Terminal Status and Expansion .. 138

 Status .. 138
 Expansion Plans ... 139
 Airport Influence Area ... 139

The Roadway System ... 141

Rail Transportation .. 142

 Present Opportunities with Rail Corridors ... 142

The Need for More Planning .. 144

 More Information is Needed .. 144
 Alternative Solutions Are Available .. 144

Urban Goods Movement Policies .. 145

Chapter 10: Transportation Enhancement Needs ... 147

 Introduction ... 149
 Issues Addressed in This Chapter ... 149

Federal Funding Criteria .. 150

 Ada County Enhancement Projects .. 151
 Schedueld Projects ... 152

Potential Gateway Projects ... 153

 Gateway Corridors ... 153

Transportation Enhancement Needs Policies .. 158

Appendix 1-A: Mitigation Policy Summary .. 159

 Mitigation Policy Summary .. 161
 APA Board Endorsement: February 17, 1997 ... 161

Appendix 1-B: Previous Transportation Planning in Ada County 167

 1961-1978 .. 169
 1982 Plan .. 169
 1992 Plan .. 170
 1996 Plan .. 171
Table of Contents

Appendix 1-C: Ada County Planning Thresholds

- Ada County Planning Thresholds .. 175

Appendix 2: COMPASS' Public Involvement Policy 177

Appendix 3: Major Roadway Project Details 181
 - Projects .. 183

Appendix 4: Air Quality Conformity Determination 193
 - Carbon Monoxide (CO) Conformity Determination 195
 - Summary ... 195
 - Introduction ... 195
 - Status of Plans .. 195
 - Interagency Consultation ... 195
 - Means of Quantitative Analysis .. 196
 - Travel Forecasting Model .. 196
 - Demographic Data ... 197
 - Test of Build/No-Build Analysis .. 197
 - Particulate Matter (PM10) Conformity Determination 199
 - Summary ... 199
 - Background ... 199
 - Build/No-Build Conclusion .. 199
Chapter 1:
General Transportation Issues
Introduction

Ada County's network of highways, roadways, pathways, and public transportation services were planned and developed through cooperative efforts of local governments (six cities and Ada County), transportation agencies such as Idaho Transportation Department, Ada County Highway District, ValleyRide, and Community Planning Association of Southwest Idaho, along with considerable input from the public and interest groups. Destination 2025 is intended to help guide major transportation decisions in Ada County and meet the requirements of federal, state and local agencies for all regional transportation and air quality planning purposes.

This chapter describes the overall transportation “vision” and policies of Destination 2025 that will provide general guidance for making local transportation decisions. It also includes a table summarizing the six levels of service (defined by capacity, speed and delay factors) adopted for Ada County roadways, a brief description of suggested policies to mitigate traffic problems, the relationship of Destination 2025 to local comprehensive plans and concludes with updated transportation policies approved by the COMPASS Board.

Appendix 1-A: Mitigation Guidelines Summary provides a detailed description of COMPASS’ mitigation policies, which will be a useful tool for decision-makers during final design. Draft and final comprehensive plans of Ada County and its cities are available at the COMPASS office for review, or copies may be obtained from the applicable city or Ada County.

Issues Addressed in This Chapter

Ada County, its six incorporated cities of Boise, Eagle, Garden City, Kuna, Meridian and Star, and Ada County Highway District need to be full partners in the transportation planning, programming and implementation process. Agreement is needed between the visions and policies of Destination 2025 and the transportation and land use goals and policies in local comprehensive plans to ensure that Ada County’s transportation network reflects the needs of its people and communities.
What Is Destination 2025?

Destination 2025 is a comprehensive long-range plan that helps guide major transportation decisions in Ada County and meets the requirements of federal, state and local agencies for regional transportation and air quality planning. It consists of goals, objectives, issues, and projects for the next 20 years that are endorsed by county and local elected officials.

This plan refines the countywide goals developed in 1999 for Destination 2020, the county’s previous transportation plan. The visions were revised during the Destination 2025 update, with additional emphasis on coordinating with local comprehensive plans and promoting land-use decisions that support their respective transportation goals.

Transportation planning is not new to the region. Destination 2025 updates the previous Ada County transportation plan (Destination 2020), which was completed in 1999. (Appendix 1-B:Previous Transportation Planning in Ada County summarizes previous transportation planning and projects implemented as a result of these plans.)

Ada County has more than 2,400 centerline miles of roadway, including all state highways and the interstate. The county also has over 30 miles of paved greenbelt. In addition to alternative transportation modes, this plan addresses traffic growth projections for the year 2025 and seeks to address deficiencies in the roadway network.

Destination 2025 also recognizes travel needs generated by travel between Ada County and Canyon County, its neighbor to the west. Figure 2 shows the area affected by the plan, which is the Metropolitan Planning Area of Ada County for vehicle emissions and fine particles of dust suspended in the air. Carbon monoxide and very fine particulates of fewer than 10 microns in diameter are the two pollutants for which the area is in non-attainment. The southern boundary of this area is known as the Boise Base Line. This is the area for planning under the federal guidelines, which are described in more detail later this plan.
Transportation Plan Boundary, Ada County

Figure 2: Ada County Boundary
Specifically, *Destination 2025* fills the following planning needs:

- Fosters consensus among local governments on future transportation needs
- Initiates the search for a financial plan to meet those needs
- Seeks to preserve long-term options by identifying rights-of-way that will be needed in the future
- Develops a long-term list of construction projects
- Fosters coordination between transportation and land use
- Addresses environmental, economic, and other key issues related to transportation

Transportation is a very complex and critical component of every community. Elected officials, citizens, and transportation professionals face a number of issues in planning and implementing transportation changes. There is no one "right" plan that completely addresses all transportation issues. Instead, a transportation plan must balance many issues to reflect the needs and desires of each community as they face a future filled with change.

Purpose and Need

Ada County's network of highways, roadways, pathways and public transportation services was planned and developed through cooperative efforts of local governments, transportation agencies such as Idaho Transportation Department, Ada County Highway District, ValleyRide, and Community Planning Association of Southwest Idaho, along with considerable input from the public and interest groups.

Effective regional transportation requires Ada County and its six incorporated cities to be full partners in the transportation planning, programming and implementation process. It provides a common planning tool for the Ada County Highway District, Ada County and its six cities, which are each responsible for land-use and transportation system control under their jurisdiction.

To ensure that Ada County's transportation network reflects the needs of its people and communities, agreement is needed between the visions and policies of *Destination 2025* and the transportation goals and policies in local comprehensive plans. The plan seeks to achieve the most realistic balance of transportation alternatives possible, including roadways, transit, carpooling, bicycling, and system management. Long-range transportation planning does not involve project design. Details such as right-of-way needs and specific project design are the responsibility of the implementing government agencies.

Instead, *Destination 2025* focuses on the broad description of a future transportation system using data that predicts the demand for travel within wide corridors of the county. With time, these broad studies are followed by tighter, more detailed designs. The need for increased funding is addressed in Chapter 5. If adequate funding does not receive public support, this plan must be revised to reflect reduced transportation services. Lack of funding for implementation of the plan could lead to greater congestion and reduced growth potential for the local economy.
Who is Responsible for the Plan?

The planning process and preparation of this report was supervised and staffed by the Community Planning Association of Southwest Idaho (COMPASS). COMPASS is a voluntary association of local governments in Ada County. Designated by the governor of Idaho in 1977 as the official Metropolitan Planning Organization, COMPASS’ mission is to "... identify problems of a countywide scale, to analyze and develop alternative solutions to said problems, to select and adopt one of the alternative solutions to constitute regional policy on the subject...." One of COMPASS’ primary responsibilities is performing long-range transportation planning on behalf of its members and to meet federal requirements.

COMPASS’ members are Ada County, the cities of Boise, Eagle, Garden City, Kuna, Meridian and Star, the Ada County Highway District, ValleyRide, Boise Independent School District, Meridian School District, the Greater Boise Auditorium District, Boise State University, Canyon County, the cities of Caldwell, Greenleaf, Melba, Middleton, Nampa, Notus, Parma, and Wilder, Canyon Highway District, Golden Gate Highway District, Nampa Highway District, and Notus-Parma Highway District. COMPASS is overseen by a Board comprised of elected officials or representatives from each member organization.

The Board addresses common problems in a voluntary forum – a process that has been ongoing since 1977. The Board hires staff members who work on requested tasks and develop alternative solutions to help solve countywide problems. The Board reviews information and considers a variety of advisory actions that may include adoption of resolutions, comprehensive plan amendments, endorsement of transportation actions, and various voluntary or mandatory implementing programs. Board members then take recommendations to their "home" councils or boards for possible action.

Figure 3: Public Meetings Helped Form this Report

Destination 2025 was developed through a cooperative process. This process involves extensive participation by citizens, COMPASS members, the Idaho Transportation Department, Idaho Division of Environmental Quality, Department of Health and Welfare and the Treasure Valley Regional Public Transportation Authority. Federal agencies involved in transportation planning and air quality issues are the Federal Highways Administration, Federal Transit Administration, and U.S. Environmental Protection Agency.
Vision Statements

The updated vision for transportation planning in Destination 2025 refined the countywide goals initially developed in 1995 by a Community Team for Destination 2015, a previous transportation plan (see Appendix 1-B: Previous Transportation Planning in Ada County). The visions, adopted by the APA Board on September 18, 1995, defined what the plan would accomplish and presented goals that communities and planning entities could use to make technical decisions. The visions were revised slightly during the Destination 2025 update, with additional emphasis on coordinating with local comprehensive plans and promoting land-use decisions that support their respective transportation goals.

The following describe key transportation issues that address the vision for Ada County Transportation in 2025:

Vision A

The adopted Comprehensive Plans will support coordinated regional development. These plans will include environmental, land use, and economic goals of the community and will foster development of a functional, affordable transportation system. Cities and counties should coordinate and promote land-use decisions that support their respective transportation goals. As a component of these local Comprehensive Plans, the 2025 Transportation Plan will support their goals. Under the guidance of COMPASS, the 2025 Transportation Plan will be coordinated with the broader plans to deal with intercounty travel needs. COMPASS will coordinate between the various Comprehensive Plans, transportation system implementation and the 2025 Transportation Plan.

Vision B/C

While the future transportation system will continue to orient mostly toward people traveling in automobiles, convenient transportation alternatives will be a priority where practical and allow opportunities to travel to work, school, shopping and other services within Ada County and in other parts of the Treasure Valley. The long-term, area wide goal for non single-occupancy vehicle alternatives is 25 percent of travel, although levels may vary within the County depending on land uses and service alternatives. Public policies should favor development and use of travel alternatives. Vanpools, carpooling, commuter buses, park & rides, high-occupancy vehicle lanes, telecommuting, bicycle and pedestrian facilities, and other alternatives will be integrated and prioritized. Whenever practical, such alternatives will be offered or coordinated through the private sector to improve efficiency and lower costs.

Vision D

Financing of the transportation system will emphasize user fees, impact fees and other financial tools to reduce reliance on general revenue sources when consistent with other public policies.

Vision E

The goal of moving traffic smoothly and safely must be balanced with protecting the quality of existing neighborhoods. The neighborhood quality of life will be protected by ensuring future roadway capacities; intersection improvements and roadway improvements are compatible with the adopted long-range transportation plan and the communities’ comprehensive plans. Pedestrians, residents and bicyclists are integral to of the transportation system and must be provided a safe and comfortable environment.

Vision F

Long-term transportation options such as beltways, river crossings, new arterials, pathways and transit systems should be preserved, emphasizing user fees and other dedicated funds to acquire rights-of-way or easements. Consideration should be given to needs beyond the twenty-year period of the plan.
Vision G

Transportation system improvements should provide reasonable mitigation for residents and businesses adversely affected. The process of assessing the effectiveness and cost of mitigation measures should involve citizens.

Level of Service

A key component of transportation planning is adoption of a policy that identifies levels of service (defined by capacity, speed and delay factors) for roadways in the county. These street classifications help measure the impact of growth and development on streets and provide benchmarks for making transportation-related decisions.

The COMPASS Board approved a “level of service” policy that recognizes that major arterials and freeways may approach capacity (level of service E) and other arterials and collectors could have traffic flow quality decline to level of service D during peak periods (see Table 1). A level of service C was adopted for those arterials and collectors that have predominant front-on housing.

Figure 4: Overland Road, Boise

New Mitigation Standards

In early 1997, the APA Board endorsed a set of policies (see Appendix 1-A:Mitigation Guidelines Summary) designed to address quality-of-life issues for all future transportation projects. The Mitigation Policy, advisory only, was developed by a special ad hoc committee in late 1996 and then submitted to the Ada County Highway District and the Idaho Transportation Department. The committee sought the agencies’ input and asked them to consider incorporating the concepts advisory into their policies and ordinances. Ada County Highway District is currently in the process of creating agency mitigation guidelines. Idaho Transportation Department, which uses federal funds for nearly all its major projects, is already required to follow the National Environmental Policy Act regulations.
The mitigation committee, made up of citizens and representatives from Ada County Highway District, school districts, local government entities and the Boise City Parks Department, was asked to recommend mitigation standards, funding sources and a process for ongoing coordination among the implementing agencies, affected government entities and neighborhood groups on projects requiring mitigation. Rather than viewing mitigation as “discretionary,” the policies urge the agencies to treat mitigation as an integral part of all future projects.

In addition to highway and street construction, the policies cover public transportation, bike paths and pedestrian walkway projects. They also address a variety of specific topics, including extensive public involvement; design considerations, projects subject to mitigation policy, the natural environment, right-of-way preservation and acquisition, community and neighborhood integrity, funding options and issue identification.

The mitigation process and policies are intended to benefit the entire community, as well as the neighborhoods in which the projects occur. Recognizing that an effective transportation system is vital to the future of the community, the policies suggest that costs or impacts of projects should not fall unfairly on the residents, businesses and property owners on the streets and in the neighborhoods where projects are implemented. The desired results of the policies are as follows:

- Less negative energy expended in implementation of projects.
- A reduction in future mitigation problems.
- Better investment of tax dollars for future projects.
- Higher-quality projects.
- Community needs served in a more timely fashion, while considering the efficient use of public funds.

Integration with Local Comprehensive Plans

Ada County’s transportation system reflects choices made within its communities – choices about land-use and zoning, community design and the way people travel to and from work, shopping, school and recreation. As communities within Ada County grow and change, transportation and comprehensive plans must be developed to meet changing needs.

To integrate *Destination 2025* with the county’s and cities’ planning efforts, the final document was submitted to COMPASS’ member agencies to be considered for formal incorporation into their comprehensive plans. Once adopted by local governments, *Destination 2025* will be the only comprehensive, long-term, locally adopted policy document for future transportation planning in Ada County.
Many local comprehensive plans were in the process of being updated during development of *Destination 2025*. Goals and policies under consideration for inclusion in these draft plans are subject to modification during their adoption processes.

![Image of Downtown Kuna](image)

Figure 6: Downtown Kuna

However, several themes have emerged as the county and each community develop their comprehensive plans, including the following:

- During the next 20 years, about 95 percent of the new residents of Ada County are expected to settle in or around the cities.

- New Ada County residents will expect to have schools, roads, emergency services, a choice of places to live and places to work and shop.

- People who already live here will desire improvements in their services, including parks and recreation facilities, less-crowded schools, efficient emergency services and improved public transportation. Everyone will want clean air, clean water and reasonable taxes.

- Much of what has been developed in cities across the country and in Ada County in the past 60 years has been oriented to accommodate and even dictate automobile travel, which has led to negative effects on the quality-of-life people seek.

- There is a desire among many citizens to explore land-use and design concepts that reduce reliance on the automobile and enhance options for pedestrian, bus and other transit modes of travel.

- Transportation planning and land-use planning need to be compatible with each community's transportation system and should take into account projected land-use patterns.

- In smaller, growing cities such as Star and Eagle, the demand on transportation facilities will increase. Growth will require new streets and modifications to existing routes to serve these growing towns.

- The timing, location and expansion of the transportation infrastructure are important factors affecting development.

- A major concern is the need to maintain and improve livability in residential areas.

- Garden City has some special logistical issues. Currently split into nine fragmented neighborhoods by major streets and the Boise River, the city needs to ensure that it is not further split.

- A lack of sidewalks and pathways discourages walking and biking.

- Coordination of transportation planning with other communities will become even more important as Ada County's communities continue to grow in the next 20 years.
Table 1: Level of Service

<table>
<thead>
<tr>
<th>Level</th>
<th>Description*</th>
<th>Comments</th>
<th>Current Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Average speed: (\geq 30) mph. Intersection delay minimal (less than 5 seconds per vehicle).</td>
<td>May be experienced in late evenings or very early morning.</td>
<td>Virtually any street at 3 a.m.</td>
</tr>
<tr>
<td>B</td>
<td>Average speed: (\geq 24) mph. Intersection delay acceptable (5-15 seconds per vehicle).</td>
<td>May be experienced in the mid day at some intersections</td>
<td>State Street and SH 55, 11th St and Grove St., State & Eagle at mid-day.</td>
</tr>
<tr>
<td>C</td>
<td>Stable flow, longer lines at signals, average speed: (\geq 18) mph. Intersection delay increases (15-25 seconds).</td>
<td>Established as general goal for Ada County with exceptions permitted on some streets.</td>
<td>Gary Lane between Glenwood and Gillis St. Rosehill St. between Roosevelt St. and Vista Ave.</td>
</tr>
<tr>
<td>D</td>
<td>Unstable with small increases in volume increasing delays, average speed: (\geq 14) mph. Intersection delay creates problems (25-40 seconds).</td>
<td>Acceptable on minor arterials and collectors during rush hours that do not have predominantly front on housing.</td>
<td>Glenwood St between Chinden Blvd and State St. Emerald St between Cole Rd and Orchard St.</td>
</tr>
<tr>
<td>E</td>
<td>Significant decrease in average speed: (\geq 10) mph. Intersection delays of 40 to 60 seconds.</td>
<td>Acceptable for many large metropolitan areas (more than one million people).</td>
<td>Fort St between Jefferson St and 2nd St. 1 - 64 between Orchard and Broadway interchanges.</td>
</tr>
<tr>
<td>F</td>
<td>Extremely low average speed: (\leq 10) mph. Intersection congestion likely at critical points. Intersection delays greater than 60 seconds.</td>
<td>Typical rush hour conditions for very large metropolitan areas. Frequently associated with air pollution problems for carbon monoxide and ozone.</td>
<td>Broadway Ave river crossing. Chinden Blvd outbound at PM rush hour. Milwaukee St on the day after Thanksgiving.</td>
</tr>
</tbody>
</table>

For more detailed information regarding planning thresholds, see Appendix 1-C: Ada County Planning Thresholds.
Chapters in Destination 2025

This report consists of 10 chapters, which are listed below. Transportation policies are included at the end of most chapters, which, along with the functional street classification recommendations and transportation projects, are key to understanding how this plan will affect transportation decisions over the next several years. Appendices and technical supplements are listed in the Table of Contents and referenced in each chapter. Following is a brief outline of each chapter in this plan:

Chapter 1 – General Transportation Issues
- Overall transportation “vision” and policies of Destination 2025.
- The six levels of roadway service adopted for Ada County roadways.
- Suggested policies to mitigate traffic problems.

Chapter 2 – Public Involvement
- The extensive Destination 2025 public involvement process.
- Federal requirements.
- Major groups involved.
- Public involvement policy and activities.

Chapter 3 – Travel Forecasts
- How COMPASS transportation planning computer model works.
- How model results are used.
- What inputs are used for the model.

Chapter 4 – Street Classification System
- Description of each street classification.
- Classification maps from the 2015 Plan and new maps for the 2025 Plan.
- Major urban intersection preservation.
- Major capital projects listed for preservation.
- Recommended studies of collectors and a major project.

Chapter 5 – Major Roadway Projects
- Major roadway capital projects committed and recommended for construction over the next 20 years.
- Potential new funding sources to meet the projected shortfall.

Chapter 6 – Environmental Effects of Recommended Roadway System
Potential effects of major roadway projects on the natural and built environments.
Chapter 7 – Alternative Transportation
- Goals, service areas and funding options to help achieve the alternative transportation vision.

Chapter 8 – Ridge-to-Rivers Pathways Plan
- Progress of the Ridge-to-Rivers Pathways Plan.
- Future vision.
- Funding status / source.

Chapter 9 - Freight/Goods Movement
- Major preservation and transportation issues for the Boise airport.
- Freight, intercity and possible long-term commuter needs for rail corridors.
- How the transportation system affects the movement of goods.

Chapter 10 – Enhancement Needs
- Twenty-one "gateways" in Ada County and its cities.
Key Transportation Planning Issues

The list below is a sample of the numerous issues that were considered in developing the *Destination 2025 Regional Transportation Plan for Ada County*. (Items are not presented in any order of importance or priority.)

Access to Work, Shopping, Services

Transportation services must be the conduit between people and their places of work, shopping, school, health care, etc. Roadways are one part of this connection. Public transportation and pathways are also vital parts of the system. The economy of the community also depends on the quality of its transportation system to carry goods to market.

Vehicle Miles of Travel Increase

As the community grows – and spreads further out – the amount of travel will increase faster than the population since travel distances between homes and their destinations are further apart. The comprehensive plans of the cities and the county play a vital part in guiding travel increases.

Safety for Motorists, Bicyclists and Pedestrians

As travel increases, the safety of those who use the system will remain the highest priority. Those who drive or bike on the roads, as well as those who walk along the roads, must be accommodated.

Congestion and Delay

As travel increases, so do the delays experienced by travelers. One recent study concluded that, if nothing is done to improve the situation, travel times could increase up to 50 percent from today.

Neighborhood Quality

Unlike sewers, waterlines, and other "infrastructure" that serve the community, roads are a highly visible utility to citizens. They see roads outside their windows and hear traffic from their backyards. Nearly all citizens have first-hand experience using the roadway system, which gives them their own perspective on what should be done – or not done. Where and how roads are built will always be a controversial issue.

Financing

The cost of improving the transportation system means balancing revenues with needs. If funding falls short for adequate roads and alternative transportation, much higher congestion can occur. Alternative transportation, such as transit, carpooling, and pathways, can absorb some of the travel demand only if adequately funded and communities are well designed. Subsidies favoring one mode over another are another important financial issue. Many economists and transportation professionals believe these subsidies have a far greater effect on travel choices than suspected. While some subsidies, such as government financial support for transit, are open, other subsidies are hidden. For example, parking is often provided "free" to drivers.

Public Choices

Decision-makers must consider the public choice for future transportation. For the past three generations, that choice has been the automobile. Choice of travel mode is usually based on personal cost, time considerations and perceptions about convenience and privacy.
Land Use and Transportation

The amount and the design of land use have a major effect on travel. Low-density developments with buildings surrounded by parking lots encourage – perhaps even dictate – reliance on the car. Communities and their citizens need to make decisions about lifestyle choices.

Air Quality

Travel increases and delays will affect the air quality of the community. Since more than 72 percent of the carbon monoxide consists of car exhaust, transportation planning must consider how future travel patterns will meet air quality standards.

Maintenance of the Existing System

While much attention is given to building new roads, expanding existing roads, or adding new transit services, a major portion of the transportation resources is used to operate and maintain the existing system. Rebuilding roads and bridges, replacing and repairing buses, and maintaining today's pathways cannot be ignored.

Corridor Preservation

Destination 2025 must identify where roads and other facilities are needed beyond the 20-year term. If policies are not effectively implemented to preserve important corridors, someone will build over the land. Then the costs for buying and building facilities in the future will be much higher.
Federal Issues

Several federal requirements affect the transportation plan. The key requirements are specified by the Transportation Equity Act for the 21st Century (TEA-21), signed into law on June 9, 1998, as Public Law 105-178. It authorizes the federal surface transportation programs for highways, highway safety and transit for the 6-year period 1998-2003. The federal law is carried out through federal regulations under 23 CFR 450.322 and 49 CFR 613.322. These federal laws and regulations state a plan must:

- Address at least a 20-year horizon.
- Include long-range and short-range strategies and actions that lead to development of an integrated intermodal transportation system that facilitates the movement of people and goods.

Section 1203(f) of TEA-21 provides a general scope for the planning process. It states that the projects and policies will:

- Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity and efficiency.
- Increase the safety and security of the transportation system for motorized and non-motorized users.
- Increase the accessibility and mobility options available to people and for freight.
- Protect and enhance the environment, promote energy conservation and improve quality of life.
- Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight.
- Promote efficient system management and operation.
- Emphasize the preservation of the existing transportation system.

COMPASS' transportation plans also must consider comprehensive community planning and be consistent with air quality plans. The 1990 Clean Air Act Amendment (Section 176(c)(4)(c)) requires all transportation plans, programs and projects to conform to the State Implementation Plan (SIP). Destination 2025 must support the intent of the SIP and contribute to the reduction of carbon monoxide and fine particulates in the area. The way in which conformity is demonstrated is further defined by federal regulations under "Air Quality Transportation Plans, Programs and Projects, Federal or State Implementation Plan Conformity Rule" (58 CFR 62188 (November 24, 1993)).

The approval process for plans and programs must be open to the public, including private transportation providers, minorities, disadvantaged business enterprises, senior citizens, and people with disabilities.
Implementation of the Plan

Three major documents will help implement Destination 2025:

- The annual Transportation Improvement Program (COMPASS)
- The Transit Development Plan (ValleyRide)
- The annual Unified Planning Work Program (COMPASS)

Transportation Improvement Program

The Transportation Improvement Program is a short-range (three-to-six-year) program of transportation projects for Ada County. All projects that are regionally significant or use federal dollars, such as the transit system, must be shown in the Transportation Improvement Program. This is a budget document, not a plan, which combines major projects from Ada County Highway District’s Capital Improvement Program, Idaho Transportation Department and the preliminary Transit Development Plan. Before major projects can be included in the Transportation Improvement Program, they must be referenced in the area’s Long-Range Transportation Plan, Destination 2025. This program and the projects contained in Destination 2025 must be consistent with plans to control air pollution.

Projects shown in the first two years—the years immediately following the current year—must be funded from existing revenue sources. The first three years of the Transportation Improvement Program constitute an implicit commitment to accomplish the projects. Projects beyond this initial three-year period are informational, allowing citizens and others to be aware of the proposals and have adequate time to respond. As the projects in the first three years of the Transportation Improvement Program move into the implementation phase, the public involvement process shifts from "Should this project be done?" to "How should this project be done?" At this stage, public involvement becomes the responsibility of the agency implementing the project.

The Transit Development Program

While Destination 2025 addresses broad policies and goals for alternative transportation, the Transit Development Plan provides much more detailed strategies to achieve goals. It constitutes an "action plan" with year-by-year programming of capital projects (bus purchases, buildings, etc.), service improvements (new routes, expansion of service hours, etc.), financial strategies (fare changes, tax revenues) related to funding capital and operating costs and other strategies. Generally, such plans are prepared every three to five years. COMPASS assists ValleyRide in this effort. As the metropolitan planning organization, COMPASS must endorse the Transit Development Plan, although primary responsibility for implementation lies with ValleyRide and the public transportation providers.

Unified Planning Work Program/Budget

COMPASS prepares an annual work program, the Unified Planning Work Program that details the allocation of planning dollars by various tasks. Each task focuses on a particular area, the nature of which is driven by grant requirements and the direction of the COMPASS Board. While the Transportation Improvement Program and Transit Development Plan generally focus on investments in roadways, buses and services, the Unified Planning Work Program outlines planning activities desired by the community. The policies contained in Destination 2025 will be developed under tasks in the Unified Planning Work Program approved over the next few years. New legislation, support for committees, and special studies will be programmed in the Unified Planning Work Program as authorized by the COMPASS Board. Limited resources will affect how many policies in Destination 2025 can be developed each year.
Data Used for *Destination 2025*

Population and Employment

New travel patterns inevitably emerge as residential and business locations change. Transportation planning is intended to meet future needs — not simply address today's issues. Plans rely on population and employment growth projections that try to gauge the amount of new growth and where it will occur.

A computer model combines this information with data on people's travel habits: how far will they go for work and other purposes, how many trips per day they make and how sensitive they are to traffic delays and transportation-related costs (see Chapter 3 for more description of the travel forecast model). Future transportation needs are then estimated based on projected growth and traffic patterns.

The population assumptions presented below are based on regional projections. Data from several sources were used to project employment: the 2000 U.S. Census, the Idaho Population and Employment Forecast and independent forecasts prepared by John Church, a consultant to Idaho Power, a division of Ida Corp. To help predict future growth patterns, it is necessary to have an accurate picture of how growth has occurred in the past. In 1980, APA began monitoring subdivision plats and building permits, which provides an accurate means of tracking development patterns and helps estimate population changes in the county. COMPASS also uses these reports to test whether the forecasts are consistent with actual growth. These reports are issued twice each year, normally in August and February.

Ada County's population grew at a rate of 2.3 percent per year during the 1980s and more than 4 percent during the major boom of the early 1990s. The population is projected to grow to 491,520 by 2025 (see Figure 7), and employment is expected to increase from 135,356 jobs in 1990 to 330,791 jobs by 2025.

Table 2 details this population and employment growth distributed by "planning areas" throughout Ada County. Figure 8 shows the planning areas to which these forecasts apply. Planning areas used in these forecasts are not the same as corporate limits for cities or "areas of impact" used for development reviews. COMPASS keeps the boundaries of these planning areas as constant as possible to allow consistent tracking of development trends, rather than using the city limits, which change throughout the years.

![Population in Ada County](image)

Figure 7: Population in Ada County
Table 2: Ada County Population and Employment for 2025

<table>
<thead>
<tr>
<th>Planning Area</th>
<th>Population Forecast</th>
<th>Distribution</th>
<th>Retail</th>
<th>Non-Retail</th>
<th>Total</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport</td>
<td>55</td>
<td>0%</td>
<td>1,518</td>
<td>25,108</td>
<td>26,626</td>
<td>8.0%</td>
</tr>
<tr>
<td>Central Bench</td>
<td>48,283</td>
<td>9.8%</td>
<td>7,686</td>
<td>34,721</td>
<td>42,407</td>
<td>12.8%</td>
</tr>
<tr>
<td>Downtown Boise</td>
<td>6,896</td>
<td>1.4%</td>
<td>9,468</td>
<td>53,568</td>
<td>63,036</td>
<td>19.1%</td>
</tr>
<tr>
<td>East End</td>
<td>8,624</td>
<td>1.8%</td>
<td>160</td>
<td>5,887</td>
<td>6,047</td>
<td>1.8%</td>
</tr>
<tr>
<td>Foothills</td>
<td>13,445</td>
<td>2.7%</td>
<td>704</td>
<td>4,339</td>
<td>5,044</td>
<td>1.5%</td>
</tr>
<tr>
<td>North End</td>
<td>21,081</td>
<td>4.3%</td>
<td>1,482</td>
<td>4,683</td>
<td>6,165</td>
<td>1.9%</td>
</tr>
<tr>
<td>Northwest</td>
<td>24,250</td>
<td>4.9%</td>
<td>1,838</td>
<td>3,439</td>
<td>5,277</td>
<td>1.6%</td>
</tr>
<tr>
<td>Southeast</td>
<td>59,200</td>
<td>11.4%</td>
<td>6,888</td>
<td>33,908</td>
<td>40,776</td>
<td>12.3%</td>
</tr>
<tr>
<td>Southwest</td>
<td>48,565</td>
<td>9.9%</td>
<td>3,243</td>
<td>12,706</td>
<td>15,949</td>
<td>4.8%</td>
</tr>
<tr>
<td>West Bench</td>
<td>76,270</td>
<td>15.5%</td>
<td>17,718</td>
<td>40,226</td>
<td>57,945</td>
<td>17.5%</td>
</tr>
<tr>
<td>Boise Area Total</td>
<td>303,650</td>
<td></td>
<td>50,685</td>
<td>216,585</td>
<td>269,272</td>
<td></td>
</tr>
<tr>
<td>Eagle</td>
<td>19,215</td>
<td>3.9%</td>
<td>2,077</td>
<td>3,020</td>
<td>5,096</td>
<td>1.5%</td>
</tr>
<tr>
<td>Garden City</td>
<td>19,423</td>
<td>4.0%</td>
<td>3,709</td>
<td>7,497</td>
<td>11,206</td>
<td>3.4%</td>
</tr>
<tr>
<td>Kuna</td>
<td>8,110</td>
<td>1.6%</td>
<td>695</td>
<td>2,163</td>
<td>2,858</td>
<td>0.9%</td>
</tr>
<tr>
<td>Meridian</td>
<td>54,495</td>
<td>11.1%</td>
<td>4,391</td>
<td>14,049</td>
<td>18,411</td>
<td>5.6%</td>
</tr>
<tr>
<td>Star</td>
<td>5,206</td>
<td>1.1%</td>
<td>552</td>
<td>652</td>
<td>1,213</td>
<td>0.4%</td>
</tr>
<tr>
<td>Urban Area Total</td>
<td>410,699</td>
<td></td>
<td>62,089</td>
<td>245,966</td>
<td>308,055</td>
<td></td>
</tr>
<tr>
<td>Rural Foothills</td>
<td>7,715</td>
<td>1.6%</td>
<td>50</td>
<td>338</td>
<td>388</td>
<td>0.1%</td>
</tr>
<tr>
<td>Rural</td>
<td>73,706</td>
<td>15.0%</td>
<td>4,025</td>
<td>18,322</td>
<td>22,348</td>
<td>6.8%</td>
</tr>
<tr>
<td>Rural Area Total</td>
<td>81,421</td>
<td></td>
<td>4,075</td>
<td>18,660</td>
<td>22,736</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>491,520</td>
<td>100.0%</td>
<td>66,164</td>
<td>264,627</td>
<td>330,791</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Note: The planning area boundaries, as identified above, were established by the Ada Planning Association (APA) in 1990, and were refined in 2002 to include planning areas for Star and rural foothills. A map of these areas is on the following page.
Planning Areas, Ada County

Figure 8: Ada County Planning Areas
The methodology for the regional forecasts and for allocation of growth by planning areas was reviewed by the COMPASS Demographic Advisory Committee. The COMPASS Board also reviewed, refined, and approved these growth data, which are now used by local governments.

A committee comprised of public and private experts, academicians, real estate developers, and citizens developed overall demographic forecasts. These forecasts were then allocated to even smaller areas called "traffic analysis zones" (TAZs) for input into a travel forecast model.

Distribution of growth was based on current land-use patterns and economic conditions, vacant land, zoning and comprehensive plans, and location and prospects of major area employers.

Ada County Demographics

Ada County and the surrounding area are made up of numerous groups: neighborhoods, ethnic groups, business groups, bicyclists, motorists, landowners, renters, and seniors. Their interests may overlap or conflict. Demographics are the characteristics of the population, many of which have a strong bearing on travel behavior. Demographic data considered during development of Destination 2025 include the following sections.

Auto Ownership

This is one of the strongest factors in determining travel habits. In 2000, more than 254,333 cars were registered in Ada County (1.2 persons per vehicle), compared to about 185,000 cars and 1.1 persons per vehicle in 1990.

By 2000, vehicle ownership in Ada County had risen to more than two vehicles per household, with most of the county's households having two or more vehicles. Car ownership per household is listed below:

- No vehicle 2.8 percent
- One vehicle 30.5 percent
- Two vehicles 44.6 percent
- Three vehicles 15.7 percent
- Four vehicles 4.0 percent
- Five or more vehicles 2.5 percent

Labor Force Participation and Size of Households

The labor force is the portion of the adult working age population (16-65 years old) who are working or actively seeking work. This has been on the increase since the 1940s in Ada County and throughout the country. Household size is just 2.59 persons per household in Ada County, which echoes the national trend of decreasing household size. Both of these trends have led to an increase in the number of trips on Ada County roadways. A 1993 study for the U.S. Department of Transportation concluded that 75 percent of the travel increase in the U.S. was related to changes in travel behavior – not growth.

Age and Disability

The size of the population in the categories 65 years and older and younger than 16 years is of special significance to public transportation and other modes such as walking and biking. An inability to drive due to age or disability can put people at a strong disadvantage in a car-dominated environment. Citizens can find themselves cut off where public transportation does not exist and basic services (medical, shopping, etc.) are too remote for walking. The national trend is for the elderly to make up an increasing share of the population. This is true in Ada County. Persons with disabilities have special transportation needs. Some degree of "mobility limitation"
was reported by 1,000 of the 13,000 persons in the 16-64 age group and by 6,100 of the 20,000 persons 65 and older.

Minorities Population

There is not a significant relationship between travel habits and minority status locally, but the effects of transportation investments on minority groups should be considered. Ada County's population is only 9.4 percent minority. Unlike some regions, there are no specific areas in Ada County seen as minority communities.

<table>
<thead>
<tr>
<th>Race Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>92.9%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>0.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>0.7%</td>
</tr>
<tr>
<td>Asian</td>
<td>1.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander</td>
<td>0.1%</td>
</tr>
<tr>
<td>Some other race</td>
<td>1.7%</td>
</tr>
<tr>
<td>Two or more races</td>
<td>2.2%</td>
</tr>
<tr>
<td>Hispanic or Latino (of any race) *</td>
<td>4.5%</td>
</tr>
<tr>
<td>White Non-Hispanic</td>
<td>90.6%</td>
</tr>
</tbody>
</table>

* The category of Hispanic/Latino includes Ada County residents who belong to racial groups (White, Black, Asian, etc.) The percentages of all groups will add up to more than 100 percent.
Existing Travel Behavior

Means of Commuting

According to the 2000 Census, more than 87 percent of Ada County residents traveled to work by car or light truck, with 79 percent of the respondents saying they drove alone. This pattern is typical of U.S. communities outside the largest metropolitan areas. Surveys completed by the Ada County Highway District over the past decade show that rush-hour vehicle occupancies range from 1.15 to 1.17 (higher during non-rush hours).

How Ada County Residents Got to Work:
- Drove alone 78.6 percent
- Used transit 2.0 percent
- Carpooled 7.7 percent
- Biked 3.3 percent
- Walked 1.3 percent
- Other means 1.2 percent
- Worked at home 5.9 percent

Source: U.S. Census Bureau, 2000 Census

Time of Day Travel

The distribution of trips throughout the day has a significant impact on transportation planning. When trips cluster tightly around the rush hour, as they do in Ada County, peak demands on roadways can lead to brief, but intense congestion (see Figure 9). As urban areas grow, this congestion causes more people to choose travel times outside of the rush hour. In Ada County, the "rush hour" is still limited to about two hours per day, with peaks between 7 a.m. and 8 a.m. and between 5 p.m. and 6 p.m. In larger cities the rush hours can run up to six hours per day. Spreading out rush hours makes more efficient use of the transportation system, since capacities of roadway and transit services are designed to meet peak needs. This means that off-peak hours have more unused capacity available. In communities with surplus off-peak transportation capacity (and high congestion during peak hours), policies may be designed to encourage travel outside normal rush hours. Common solutions include lower transit fares, road tolls and programs encouraging employers to allow staggered work hours.
Trip Distribution by Time of Day, 2000
Average Weekday Traffic for 5 Selected Streets

Figure 9: Trip Distribution Figures for Ada County

Intercounty Travel Patterns

A major concern voiced by many citizens is the amount of traffic originating outside Ada County and its effect on congestion and transportation needs in Ada County. Table 4 summarizes these work trips in Ada County. It also shows that, as of 1990, non-Ada County residents contributed only 9 percent of the work trips. Since work trips tend to occur during rush hours, this is a reasonable estimate of travel impacts.

Although hard information is not now available, there is evidence most of these "outside" workers use state highways for most of their travel. With Canyon County commuters making up 70 percent of the outside work travel, it is clear that I-84, Chinden Boulevard (Highway 20/20), and State Street (Highway 44) are the current primary avenues of travel.

Table 4: County-to-County Work Trip Interchange

<table>
<thead>
<tr>
<th>Residents of Ada County and Where they Work</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Ada County Resident Workers</td>
<td>63,240</td>
</tr>
<tr>
<td>Ada County</td>
<td>79,554</td>
</tr>
<tr>
<td>Canyon County</td>
<td>2,883</td>
</tr>
<tr>
<td>Boise County</td>
<td>194</td>
</tr>
<tr>
<td>Elmore County</td>
<td>130</td>
</tr>
<tr>
<td>To All Other Counties</td>
<td>479</td>
</tr>
<tr>
<td>Total Commuting Out of County</td>
<td>3,686</td>
</tr>
</tbody>
</table>
Residents Outside Ada County and Commuting Into Ada County

<table>
<thead>
<tr>
<th>County</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canyon County</td>
<td>5,561</td>
<td>70.5%</td>
</tr>
<tr>
<td>Gem County</td>
<td>826</td>
<td>10.5%</td>
</tr>
<tr>
<td>Elmore County</td>
<td>441</td>
<td>5.5%</td>
</tr>
<tr>
<td>Boise County</td>
<td>322</td>
<td>4.1%</td>
</tr>
<tr>
<td>Payette County</td>
<td>156</td>
<td>2.0%</td>
</tr>
<tr>
<td>From All Other Counties</td>
<td>582</td>
<td>7.4%</td>
</tr>
<tr>
<td>Total Commuting Into Ada County</td>
<td>7,888</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total Number of Workers in Ada County *

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada County Residents</td>
<td>79,554</td>
<td>91.0%</td>
</tr>
<tr>
<td>Non-Ada County Residents</td>
<td>7,888</td>
<td>9.0%</td>
</tr>
<tr>
<td>Total Number of Workers in Ada County</td>
<td>87,442</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 1990. (Data for 2000 will be available in 2003.)
Intelligent Transportation System (ITS)

What is Intelligent Transportation System?
The Intelligent Transportation System (ITS) is the application of advanced technologies to improve the efficiency and safety of transportation systems. It refers to strategies relative to the use of advanced technologies that help reduce congestion, enhance safety and protect the environment. Common examples of these strategies are synchronized traffic lights, highway incident management, automated transit fare collection, and remote emission sensing devices. As traffic volumes increase, intelligent transportation system solutions become critical component of transportation planning. The advantage of Intelligent Transportation System is that its implementation can enhance traffic flow and ease congestion within the existing right of way and most of the time without any disturbance to the built environment.

Background Work
Based on the successful results of this new approach in different parts of the country, APA in 1995 experimented with the application of advanced technologies in testing auto emissions and in the collection of data on the origin and destination of travels in Ada County. The results pointed to more efficient ways of monitoring auto emissions and travel patterns. In 1997 APA launched the development of a Preliminary Intelligent Transportation System Plan for the Treasure Valley. The primary purpose of this effort was to identify potential Intelligent Transportation System applications for the area’s transportation system. Based upon the success of this project, the Treasure Valley local governments recommended a follow-up work as Phase II of the Treasure Valley Intelligent Transportation System Project. Four Intelligent Transportation System plans for the Treasure Valley were developed through this effort. These were:

- Signal System Master Plan
- Freeway Management Plan
- Communication Master Plan
- System Integration Plan

These plans were adopted by the APA Board of Directors in September 1999.

Recommendations of the Treasure Valley Intelligent Transportation System Plans
Some recommendations of the Treasure Valley Intelligent Transportation System Plans are:

- Enhancement of the Ada County Highway District’s Traffic Management Center as the Traffic Management Center for the entire Ada County
 Work has already begun on this goal as the ITD and ACHD have installed closed-circuit TV cameras and loop detectors at critical areas to monitor traffic. More funding is being sought to fund further enhancements.

- Formation of a single traffic management center for all traffic signal synchronization and incident management on Treasure Valley’s roadways

- Consideration of Intelligent Transportation System solutions in all transportation planning activities in Treasure Valley, as a means of improving traffic flow and reducing congestion

- Development of an integrated incident management system plan for the Treasure Valley freeway system
 This plan has been completed and was implemented by the ACHD in 2001.
In Conclusion

All of the data gathered during development of Destination 2020 and updated for Destination 2025 help make transportation planning more accurate and meaningful. The issues described in this introduction are addressed throughout this document. Each chapter concludes with policies approved by COMPASS to help guide Ada County governments as they face the challenges of transportation planning over the next 20 years. This plan will be submitted to Ada County and each of its six cities to be considered as part of their own comprehensive plans.

As is the case with every long-range plan, conditions will change in the near future and yet another update will be written within the next three years. Each long-range plan provides new goals, new issues, and new projects, building on the plans before it. Destination 2025 is intended to serve as a guide until the next transportation plan is developed. As always, the COMPASS Board, members, and staff will be looking to the community to help continue the quality of life and economic vitality that make the Treasure Valley a special place with a promising future.
General Transportation Policies

1. COMPASS will consider the approved demographic forecasts as policy tools.

2. COMPASS will work with local and state agencies to encourage transportation and other key planning, environmental, and infrastructure studies to coordinate their data assumptions concerning future growth and land uses.

3. COMPASS will update the employment and population forecasts at least every three years. Updates that are more frequent may be considered based on development monitoring or economic changes.

4. COMPASS will update population and employment estimates on an annual basis.

5. During rush hours, the traffic flow "level of service" on major arterials and freeways may approach capacity (LOS E). Other arterials and collectors would have traffic flow quality decline to LOS D only during rush hours. In order to protect the quality of life where the roadside environment is predominantly homes fronting on the street, traffic flow quality on such streets should be at the comfortable range (LOS C) during rush hours. COMPASS will encourage appropriate local governments to require future developments to demonstrate that additional traffic would not surpass LOS C capacity on streets where the current roadside development is predominantly fronting homes where direct access is to that street or from which street the homes take their address. The following factors will be explored when deciding whether LOS D or LOS E is appropriate:
 a. Economic Feasibility
 b. Engineering Feasibility
 c. Environmental Impact
 d. Impact on Adjacent Development
 e. Maximum System Benefit
 f. Policy Board Decision
 g. Technical Staff Recommendation
 h. Total Cost
 (Factors are not listed in order of priority.)

6. COMPASS will encourage transportation implementing agencies to protect the neighborhood quality of life by ensuring future roadway capacities, intersection improvements and roadway improvements are compatible with the adopted long-range transportation plan, local comprehensive plans, and a comprehensive transportation system. Pedestrians, residents and bicyclists also are users of the transportation system and should be provided a safe and comfortable environment.

7. COMPASS will continue to work with area governments to improve the mitigation process. COMPASS will support the Ada County Highway District and other transportation agencies in the implementation of mitigation measures per their current policies when future roadway expansions affect existing residential areas. Where appropriate and in accordance with law, mitigation costs should be passed on to future developments.

8. A particulate matter analysis is incorporated and made a part of the policies of this document, specifically that COMPASS staff will continue to perform build/no-build analyses for all regionally significant or capacity expansion projects. Where it is demonstrated that a build analysis increases emissions, offsetting transportation control measures shall be identified as a condition of approval.

9. COMPASS will incorporate data from the Treasure Valley Futures project and provide leadership in efforts to reduce travel demand, including education and suggested policies to member agencies.
10. COMPASS, in concert with local governments of the Treasure Valley and transportation providers, will develop and implement a public education process using printed and electronic media to inform citizens about alternative transportation and alternative land-use patterns. This effort will promote alternative transportation as a means to reduce travel demand in the Treasure Valley.

11. COMPASS will commit to monitor mode choice annually using best available data sources, including random household surveys, for inclusion in the Transportation Improvement Program development process, which results will be included in the annual transportation system performance report.

12. COMPASS will produce an annual transportation system performance report. COMPASS staff, in conjunction with the COMPASS Citizens’ Advisory Committee, will design the report and present it to the COMPASS Transportation Advisory Committee and COMPASS Board for concurrence.
Chapter 2:
Public Involvement
Introduction

COMPASS acknowledges that public involvement is critical to effective planning and implementation of major transportation programs. Public input helps develop fresh solutions to challenging transportation issues, builds understanding and a sense of ownership and helps prevent unnecessary controversy that can delay much-needed projects and improvements.

COMPASS uses a variety of outreach and notification strategies to reach a wide range of citizens, to provide numerous channels for public input and to consider/incorporate public input into its programs, projects and decisions. This chapter describes the Destination 2025 public involvement process, the major groups involved, and references the updated COMPASS Public Involvement Policy approved by the COMPASS Board on June 19, 2000 (see Appendix 2:COMPASS' Public Involvement Policy).

Issues Addressed in This Chapter

Because public participation is considered essential to successful outcomes, the COMPASS Board and major committees supported public participation early on and throughout the Destination 2025 planning process. (See section below.)

Federal Requirements and COMPASS' Public Involvement Policy

The 1990 Clean Air Act amendments and the Transportation Equity Act for the 21st Century placed added responsibility on state and local transportation planning agencies to involve the public and private sectors.

The regulations allow broad latitude to local agencies to design their process. COMPASS' public involvement activities were informal until the fall of 1993. At that point, working with its Citizens Advisory Committee and the general public, the Ada Planning Association (as COMPASS was then titled) developed an initial Public Involvement Policy, adopted by the APA Board as Resolution No. 4-94 on March 21, 1994, and revised November 16, 1998, and again June 19, 2000.

The policy places major emphasis on involving public and private sectors earlier in the planning process and expanding the types of public involvement activities. (See Appendix 2:COMPASS' Public Involvement Policy.)
Public Involvement in the 2025 Process

COMPASS used a variety of public involvement activities to help develop Destination 2020 and 2025. Table 5 shows the overall planning schedule that led to adoption of the plan.

The public involvement schedule for the Destination 2025 regional long-range transportation plan as approved by the Ada Planning Association/COMPASS Board is as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September-November 1998</td>
<td>Encourage Ada County and its six cities to establish Community Teams.</td>
</tr>
<tr>
<td>December 1998- January 1999</td>
<td>Conduct Community Team meetings.</td>
</tr>
<tr>
<td></td>
<td>Conduct four public workshops (support provided by APA Staff and Citizens Advisory Committee).</td>
</tr>
<tr>
<td></td>
<td>Consolidate Community Team recommendations.</td>
</tr>
<tr>
<td>Mid-March 1999</td>
<td>Conduct two countywide meetings to present combined recommendations.</td>
</tr>
<tr>
<td>Late March 1999</td>
<td>Make technical evaluations and citizen comments available for public review.</td>
</tr>
<tr>
<td></td>
<td>Meet with Technical and Citizens Advisory Committees and staff to review recommended changes.</td>
</tr>
<tr>
<td>April 1999</td>
<td>Release draft of Recommended Changes to the Plan for public review.</td>
</tr>
<tr>
<td>May-June 1999</td>
<td>Conduct three public hearings to receive citizen comments.</td>
</tr>
<tr>
<td>July − February 2000</td>
<td>Staff develops document.</td>
</tr>
<tr>
<td>June 1, 2000</td>
<td>Public hearing to consider amendment to plan to include widening of Curtis Road.</td>
</tr>
<tr>
<td>July − May 2001</td>
<td>Plan routed to local Ada County governments for consideration of including the plan in comprehensive plans.</td>
</tr>
<tr>
<td>July 2001</td>
<td>Comments from local governments presented to COMPASS Board.</td>
</tr>
<tr>
<td>February 25, 2002</td>
<td>COMPASS Board approves 2025 population and employment forecasts based on extensions to earlier approved 2020 forecasts.</td>
</tr>
<tr>
<td>February 2002</td>
<td>Public comment period opens for updating plan. Comments solicited via mail, fax, e-mail, or direct testimony at public hearings.</td>
</tr>
<tr>
<td>March 13-14, 2002</td>
<td>Public hearings held in Boise and Meridian.</td>
</tr>
<tr>
<td>April 3, 2002</td>
<td>Public comment period closes.</td>
</tr>
<tr>
<td>April 15, 2002</td>
<td>COMPASS Board gives preliminary approval to changes in plan. Public comments presented to Board for review.</td>
</tr>
</tbody>
</table>
Participating Groups and Their Roles

Following is a brief description of the major entities that help guide COMPASS' planning process and their respective roles in the public involvement process for Destination 2025.

The Community Planning Association of Southwest Idaho (ongoing)

Comprised of 21 elected or appointed community officials, the COMPASS Board was instrumental in determining public participation efforts for Destination 2020. Major areas of Board concern were: public involvement policies; scheduling of events; creation of county and city community teams; expansion in number of transportation stakeholders; review of Recommended Changes to the Plan; and the outcome of citizen comments.

The Technical Advisory Committee (ongoing)

This committee, which meets monthly, is composed of 22 members representing local, county, state and regional technical staffs. It annually helps develop COMPASS' Transportation Planning Work Program, including prioritizing and reviewing status of projects. During Destination 2025, the committee provided technical review of public involvement products, especially citizen comments and how they could be incorporated into the planning process.

The Citizens Advisory Committee (ongoing)

This 21-member group meets monthly and includes representatives of neighborhoods, businesses and other stakeholders. During Destination 2025, the committee reviewed all public involvement activities and submitted comments to the COMPASS Board. The committee also supported the Community Team process (i.e., facilitated and recorded at four public workshops) and reviewed readability of brochures and other informational materials.

Community Teams (ad hoc)

Community Teams were formed in Ada County and its cities specifically to create and refine a list of recommended changes to Destination 2015 for each community. At the start of public involvement activities (August 1998), APA asked the Ada County Commissioners and mayors of all six of the Ada County cities to each create a Community Team or similar process. APA staff provided support, but all other decisions (i.e. selection of team members, what public involvement activities to use) were left to each community.

Figure 10: Public Workshop in Star

Ada County, Boise, Garden City, Kuna, Meridian, and Star designated Community Teams. Several teams hosted public workshops to receive citizen input as a starting point for discussions. Their teams then created draft Recommended Changes to the Plan for their respective mayors.
and councils to review and release for public consideration. Eagle expanded a group working on the update of its comprehensive plan to act as a Community Team.

![Boise Community Team Workshop](image)

Figure 11: Boise Community Team Workshop

This Community Team concept expanded on the team process that helped develop priorities and vision statements for *Destination 2015*, the previous long-range transportation plan. During 2015, APA appointed one combined team of more than 100 people (which included elected officials – state, county, cities – and their staffs; chambers of commerce; random citizens; and representatives of neighborhoods and special-interest groups, including seniors, people with disabilities, supporters of alternative transportation and other civic, business and citizens groups). They met four times for a total of 12 hours and drafted the vision statements that continue to be the major guidelines for developing Ada County's long-range transportation plan. This was the first time such a team was used by APA for policy oversight.

The creation of the seven individual Community Teams during the 2025 process allowed each community to guide its own public involvement process. Each Community Team successfully provided *Recommended Changes to the Plan* to their mayor/councils, the public at large and ultimately for inclusion in *Destination 2025*. The Community Teams were then disbanded.

Following the initial approval of the plan in July 1999, completion of the Curtis Road extension led to public concerns about traffic congestion on this new facility. The Ada County Highway District, along with other agencies, requested the plan be amended to allow the addition of two travel lanes on this 2/3-lane road. A public hearing was held in June 2000 to consider this requested change and the plan amendment was approved in June 2000.

The preparation of the full document was completed in Fall 2000, after which it was sent to local governments for their consideration and possible inclusion into their respective comprehensive plans. This lengthy process, during which COMPASS staff met with city councils and planning and zoning commissions, was completed by early Summer 2001.

Changes requested by local governments were compiled and taken to the COMPASS Board in July 2001 for preliminary review. Modifications to the plan began with updates to the demographic projections for employment and population. These projections were revised in Fall 2002 and approved by the Board in February 2002.

A public outreach process on the plan changes was conducted in February and March 2002. It is summarized in Table 5.

Many of the key changes stemmed from the I-84 Corridor Study, which conducted its own public outreach process during 2000 and 2001. The results of this study can be viewed in the report *I-84 Corridor Study: Executive Summary* found at the COMPASS website at http://www.planning.coq.id.us/trans.htm.
Public Involvement Policies

1. COMPASS will continue to support the Public Involvement Policy for Community Planning Association, revised June 19, 2000. (See Appendix 2: COMPASS’ Public Involvement Policy.)

2. COMPASS will periodically review public involvement procedures with the assistance of the Citizens Advisory Committee and solicit recommendations for refining public involvement during future updates.

3. COMPASS will continue to offer assistance to local governments in their public involvement efforts (such as facilitation training, participation in joint public meetings, sharing of information and materials).

4. A list of public comments and COMPASS responses will be made available on the COMPASS web site. Whenever possible, portals will be developed providing direct access to information on major planning projects undertaken by COMPASS.
Chapter 3:
Travel Demand Forecast Model
Introduction

Regional transportation planning is a complicated process that requires looking into the future. Indeed, 20 years is a long time, considering Ada County’s rapid growth and changing needs.

COMPASS uses software programs called TP+ and Viper to forecast traffic conditions and identify transportation system impacts for specific years in the future. The future travel forecast results are used to determine changes in conditions for a base year. The model, recognized by the Federal Highways Administration, is produced using demographic, land use, and road condition data. Future year networks add information about specific improvements to the road network and land-use assumptions about where growth will occur.

To help keep the model updated, COMPASS has established a Transportation Model Advisory Committee to research, develop, and review model improvements and/or enhancements; review model inputs and outputs; and develop a speed/capacity matrix. The Transportation Model Advisory Committee representatives are from Ada County Highway District, Ada County, Boise City, City of Caldwell, City of Nampa, Canyon County Small Cities, Canyon County Highway Districts, Idaho Transportation Department, Idaho Division of Environmental Quality, COMPASS, and appointed transportation, land use, and air quality professionals who serve on a voluntary basis.

This chapter describes how the transportation model works, how the results are used, what types of data are used to create the model, and concludes with updated travel forecasting policies approved in July 1998.

Issues Addressed in This Chapter

To plan a system that best serves local citizens and the traveling public, COMPASS and its member organizations must have the most reliable and accurate information possible. The key to this planning effort is to forecast as accurately as possible the future travel needs of Ada County.
How the Model Works

COMPASS' model estimates the average daily Monday-through-Friday travel patterns based on Ada and Canyon counties' traffic count data. COMPASS uses the four-step model approach, shown below, which is used internationally for a variety of transportation activities.

<table>
<thead>
<tr>
<th>Travel Demand Forecasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is it? A tool to predict future traffic conditions</td>
</tr>
</tbody>
</table>

THE PROCESS

1. **Trip Generation**
 - How many trips are taken?

2. **Trip Distribution**
 - Where do people go?

3. **Mode Split**
 - Which mode is used?

4. **Trip Assignment**
 - Which route is used?

INPUTS

- Census and/or Home Interviews (Surveys)
- Traffic Counts
- Roadway Characteristics
- Demographic/Land Use Data

OUTPUTS USED FOR...

- **Travel Demand Estimation**
 - How many vehicles/people travel and by which route?

- **Development Impacts**
 - How will this development impact other roads?

- **Roadway Deficiencies**
 - What roads are overloaded and by how much?

- **Air Quality Determination**
 - Is air quality improving or getting worse?

- **Decision Support**
 - Where do we invest to best serve the community needs?

Figure 12: How the Traffic Model Works

These forecasts are applied to the area's 482 Traffic Analysis Zones (TAZ), which are based on a combination of census boundaries and local geographic features such as roads and waterways. These zones range in size from a few blocks to one or more square miles. The Traffic Analysis Zones are reviewed by the U.S. Census Bureau every 10 years. This process maintains the integrity of previous 10 years of data and updates the boundaries of the zones based on major changes such as new roads or significant changes in development.
How Model Results Are Used

The output from the travel forecast model is used for a variety of purposes, (see Figure 12), including the following:

- Traffic Impact Studies, which determine traffic impacts of large new developments such as a new retail mall
- Deficiency analyses, which determine roadway inefficiencies and/or needs because of additional growth or other system modifications
- “What if” scenarios, which are extremely beneficial in evaluating potential solutions to regional traffic problems
- Air quality analyses, which must be completed to conform with air quality laws. Since travel volume and vehicle speeds affect vehicle emissions, new or improved roads must not deteriorate existing conditions on a regional basis

Model Inputs

The travel-forecasting model is developed using the following inputs:

Traffic Data

Actual traffic count data are integral to calibrating a travel forecast model. During the calibration process, actual traffic count data are compared to modeled estimates. Traffic counts are collected from the Idaho Transportation Department and ACHD to create an existing base roadway network that is closely matched in the computerized model.

Demographic Variables

These area-wide demographic assumptions about how people make travel choices include data on population, households and employment. These assumptions, developed by COMPASS’ Demographic Advisory Committee (a group of Ada County government and private growth experts) are general in nature, so specific qualities of individual neighborhoods or businesses are not included.

Street Network Capacity

Street capacity is the number of cars a particular road can manage before congestion occurs (see Appendix 1-C:Ada County Planning Thresholds). As an analogy, a sewer line can flush so much sewage through it and no more. When more sewage is dumped into the line than the line can handle, it backs up into homes. The same event occurs on roads. Each road has a particular planning capacity similar to the diameter of the sewer line. Data on the base road network is updated as the county road system capacity expands. In order to forecast traffic, the model needs a “picture” of what is happening now. This “picture” is a digital network of the functionally classified roads and their current characteristics (number of lanes, traffic counts, speed, capacity, etc.).

The functionally classified streets in the county consist of: interstate, principal, minor and rural arterials, and collectors. (These classifications are defined in Chapter 4.) Local roads, such as those within residential subdivisions, are not individually considered in the model because the modeling software requires some abstraction. From this base network, modifications are made to the network based on budgeted, planned and/or constructed projects, population, and employment for the future conditions to estimate what happens in the future.

Speed/Capacity Matrix

The speed/capacity matrix was developed by COMPASS’ Transportation Model Advisory Committee to assign appropriate speed and planning capacities to the county’s road system. These capacities were based on functional street classification and type of area. COMPASS initially used posted speeds for the model because there was not enough time or money for a
thorough speed/travel time study. COMPASS recently added the Congestion Management System task to the Unified Planning Work Program Budget. Under this task, travel data will be collected and incorporated into the model.

Trip Type

Four trip types are input and output from the travel demand forecast model. The first three have one end of the round-trip at home, but includes stops at places such as work or shopping. These are called home-based-work, home-based-shop, and home-based-other. The fourth trip type does not have either end at home. This is called non-home-based.

Alternative Transportation Modes

Based on the 1990 Census and the 1998/1999 Household Travel Survey, the existing level on non-single occupant vehicles is approximately 19 percent. The policy goal is to achieve 25 percent by 2025 (see Chapter 1 and Chapter 7). The model assumes a pro-rated reduction in single occupant travel over the length of this plan to achieve the 25 percent goal through transportation alternatives (e.g., transit and carpool/vanpool).

Model Output

The model outputs are a revised view of the network based on future changes. The model network’s primary variable is the traffic estimation on each section of a road. The future network loads new information on each section of road. The results are changes in traffic and traffic conditions (e.g., level of service) from the base network.

The traffic counts in the base year are collections of actual counts from local transportation agencies. The model produces traffic estimates for future years. The model loads traffic on each road based on where trips start and end. The loading of traffic is adjusted based on realistic conditions which take into account congestion and increased travel time. For example, just because the interstate is the quickest road due to the high speed, not all trips use it due to congestion, which increases the amount of travel time for each trip. Eventually, all routes are equally delayed, so there is no longer an advantage to switch back and forth (a traffic condition called equilibrium).

COMPASS’ travel forecast model is going to be updated starting in September 2002. The process will begin with a Household Travel Characteristics Study, also known as an Origin/Desitation Study. The goal of the Household Travel Characteristics Study is to obtain information about the number of trips, trip length, and trip purpose by mode and time-of-day for Treasure Valley households. COMPASS anticipates having an updated two-county model by spring 2003 and is committed to establishing a peak hour model, covering 4 to 6 p.m., by summer 2003.
Travel Forecast Policies

1. COMPASS will consider the model assumptions such as roadway capacities, trip rates, and other inputs as policy level decisions, with amendments to the assumptions undergoing a formal review and approval process. This process should be developed by the Transportation Model Advisory Committee and endorsed by the COMPASS Board.

2. COMPASS will work with the Ada County Highway District, the Idaho Transportation Department, and local governments to encourage traffic impact evaluations and plans be done in coordination with the Transportation Model Advisory Committee, using, to the extent possible, the assumptions endorsed through the COMPASS process.

3. COMPASS will develop the travel forecast model's capacity to evaluate travel demand for alternative land uses.

4. COMPASS will continue to support the travel forecasting model with the best data available on population, jobs, trip origins and destinations and other community demographics. Special surveys including origin and destination surveys will be conducted as needed.

5. COMPASS will develop broadly available public education materials, specifically including the Internet, to provide information to the public about the travel demand forecasting process.
This page left intentionally blank
Chapter 4:

Preservation of Transportation Corridors
This page left intentionally blank
Introduction

Preservation of transportation corridors is one of the major challenges in planning. As communities grow over the next 20 years, many existing and potential new corridors will be developed to a point that building transportation facilities may become not only more expensive, but, in some cases, become virtually impossible. Identification of these corridors is an essential part of this plan.

A key component of regional transportation planning and corridor preservation is a classification system that describes how streets function in serving the traveling public. These classifications are critical because streets do not function independently, but as part of a system. Governments and developers use them as a guide to defining how streets will function within the network. The classification described in this chapter were developed by Federal Highways Administration and standardized throughout the country. These classifications are mandatory in order to receive federal funds. These funds can be spent only on functionally classified roads.

The key to this system is an official map that shows the classification of certain roads in the county (interstate, arterials and collectors). Neighborhood streets, also known as local roads, are not shown on the maps in this chapter. This large-scale map is available from COMPASS, the Ada County Highway District, and from each city in the county. This chapter includes a description of each classification and a small-scale version of the classification map from Destination 2020 and the new map for the Destination 2025 (divided into several sections). This chapter also includes brief descriptions of the following planning elements that are related to the classification system:

- Major urban intersection preservation
- Major transportation projects listed for preservation
- Recommended transportation studies and collector evaluations

Issues Addressed in This Chapter

Effective transportation planning requires a system of street classifications designating how streets function in serving the traveling public. A countywide functional street classification map and street design guidelines are critical to planning an integrated roadway network. Street classifications must be reevaluated and updated over time as needs change. Major intersections need to be preserved for the future to protect key corridors from development.
Functional Street Classification

Streets in the transportation network are typically classified by how they function in serving the traveling public. For example, local streets are intended to serve residential areas and not heavy traffic, while arterials are designed to service through-traffic, often restricting access (driveways and local streets) to adjacent development.

The 12 maps on the following pages show existing and proposed functional street classifications for Ada County. The first seven (Figure 13 through Figure 19) show existing classifications adopted by the APA Board on July 19, 1999, for Destination 2020. Figure 20 shows the new classifications to be adopted by the Board as part of this plan. The classifications designated in the following maps are described below.

Street Classification

Definitions and Specifications

Interstates are divided highways with two or more lanes per direction. No driveways or streets connect directly to the interstate. Instead, interchanges with bridges and ramps connect major roads and highways to the freeway. Generally, interchanges are typically one or two miles apart. This allows for very high speeds, ranging from 55-65 mph. Right-of-way width needed for freeways starts at 300 feet.

Arterials are roads carrying the major portion of trips entering, passing through, or leaving urban areas. Ideally, arterials should not penetrate identified neighborhoods. They are further defined as principal, minor, and rural.

- Principal arterials carry through-travel, but direct access is severely limited.
- Minor arterials are a subcategory, usually serving shorter, more localized travel needs. They are frequently four lanes, with five lanes at intersections. Less right-of-way (78’ - 96’) is required for minor arterials versus principal arterial (78’ - 120’).
- Rural arterials are a subset of minor arterials. Examples of rural arterials are Ten Mile and Beacon Light Roads, which were once adequate for the “farm-to-market” traffic and were not originally intended to meet the needs of urban and suburban development. Through-travel in the more rural areas can usually be accommodated by a two-lane road with three lanes at some intersections.

Collectors are roads providing traffic circulation within residential, commercial and industrial areas. They carry trips to and from arterials. Single-family homes are normally discouraged from having driveways onto collectors. Normally, volumes on collectors should be less than 8,500 vehicles per day, although this may be higher in non-residential areas. Urban collector standards are generally two to three traffic lanes with sidewalks.

Street design guidelines describe such elements as right-of-way width; pavement width; curb type; sidewalk width; minimum sight distance; minimum/maximum grade; maximum design speed; traffic index; approximate intersection spacing on arterials; and various other factors. The following arterial and collector standards are from the Ada County Highway District Development Policy Manual Specifications (December 1999, Section 7200). These engineering standards were adopted by Ada County Highway District and are described on the following page in Table 6.
Table 6: Standards for Ada County Highway District Streets

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Minor/Standard Local</th>
<th>Collector</th>
<th>Minor/Rural Arterial*</th>
<th>Minor Arterial</th>
<th>Principal Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-of-Way Width (in feet)</td>
<td>42'-50'</td>
<td>50'-70' *</td>
<td>50'-74'</td>
<td>70'-96'</td>
<td>84'-120'</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>2</td>
<td>2-3</td>
<td>3</td>
<td>5</td>
<td>5-7</td>
</tr>
<tr>
<td>Pavement Width (back of curb to back of curb)</td>
<td>29'-36'</td>
<td>29'-45'</td>
<td>50'</td>
<td>60'-72'</td>
<td>60'-96'</td>
</tr>
<tr>
<td>Traffic Lane Width</td>
<td>9'-12'</td>
<td>11'-14'</td>
<td>12'</td>
<td>11.5'-12'</td>
<td>12'</td>
</tr>
<tr>
<td>Bike Lane Width (2 each)</td>
<td>N/A</td>
<td>None-6'</td>
<td>6.5'</td>
<td>6.5'</td>
<td>N/A'</td>
</tr>
<tr>
<td>Parkway Strip (includes sidewalks and landscaping when appropriate)</td>
<td>6.5' to 10.5'</td>
<td>6.5'-12'</td>
<td>9' to 12'</td>
<td>9.5'-12'</td>
<td>9.5' to 12'</td>
</tr>
<tr>
<td>Design Speed (mph)</td>
<td>20-25</td>
<td>30</td>
<td>45</td>
<td>45</td>
<td>45-50</td>
</tr>
<tr>
<td>Driveway Access</td>
<td>Yes</td>
<td>Discouraged</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Through Traffic</td>
<td>No</td>
<td>Limited</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: Ada County Highway District Development Policy Manual, Section 7200.

*Collectors outside the urban areas along section lines often require the higher amount right-of-way. These major rural collectors are also subject to additional access control.

**Contingent upon the revision of Ada County Highway District Policy Manual, and design needs based on projected traffic and other criteria.

Ada County Highway District has 23 major categories of street standards to allow flexibility in design (landscape planter strips, marked bike lanes, etc.). The specific standards depend on detailed engineering evaluations during design. For more information on street design specifications, consult the Ada County Highway District Development Policy Manual, Section 7200.

How to Use the Functional Classification Maps

Please check both sets of Functional Classification Maps, which follow in this section.

The 2015 Functional Classification Map was adopted November 18, 1996, during the Destination 2015 development process. It is the first series of maps in this section.

Note Due to the small scale, local roads are not included.

During the Destination 2020 update process, recommended changes were adopted by the Ada Planning Association Board on July 19, 1999. Those changes affect the 2015 Functional Classification Map, which has been updated. Changes only are highlighted in Figure 20.

A two-step process is needed to fully adopt the new 2025 Functional Classification Map:

1. The Community Planning Association Board adopts recommended changes to the Long Range Transportation Plan - which requires changes to the Functional Classification Map.

2. Ada County and its six cities (Boise, Eagle, Garden City, Kuna, Meridian, and Star) each adopt the new 2025 Functional Classification Map in their comprehensive plans.

This step is in process.

The new 2025 Functional Classification Map will replace the 2020 version as the official countywide map.
2020 Functional Street Classification, Rural Planning Areas
(Adopted on July 19, 1999)

See Figures 14 through 19 for more detailed information by community

See Boise and Garden City Planning Area Map

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

* South Treasure Valley arterial corridor location to be determined

Figure 13: Rural Area Functional Classification Map
2020 Functional Street Classification, Boise and Garden City Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

Figure 14: Boise/Garden City Functional Classification Map
2020 Functional Street Classification, Downtown Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

Figure 15: Downtown Boise Functional Classification Map
2020 Functional Street Classification, Eagle Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

Figure 16: Eagle Functional Classification Map
2020 Functional Street Classification, Kuna Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

Figure 17: Kuna Functional Classification Map
2020 Functional Street Classification, Meridian Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only, final location will depend on engineering studies.

Figure 18: Meridian Functional Classification Map
2020 Functional Street Classification, Rural Planning Areas
(Adopted on July 19, 1999)

NOTE: Some roads shown on this map are proposed corridors only; final location will depend on engineering studies.

Figure 19: Star Functional Classification Map
Table 7: 2023 Functional Street Classification Changes

<table>
<thead>
<tr>
<th>No.</th>
<th>Road</th>
<th>Location</th>
<th>2020 Plan</th>
<th>2025 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SH 44</td>
<td>SH 16 – Linder Rd</td>
<td>MA</td>
<td>PA</td>
</tr>
<tr>
<td>2</td>
<td>SH 16</td>
<td>SH 44 – Ada/Gem County Boundary</td>
<td>MA</td>
<td>PA</td>
</tr>
</tbody>
</table>

Note: Codes: L - Local Street C - Collector Street PA - Principal Arterial MA - Minor Arterial RA - Rural Arterial, n.a. - New / proposed road without existing functional classification.

2025 Functional Street Classification Changes, Rural Planning Area

Figure 20: Rural Area Functional Classification Map Changes
Collector Designations

Collector roads are more of a local circulation issue. Other collectors not included on the functional classification map in developing area may be designated by Ada County Highway District in accordance with the Ada County Highway District Policy Manual. The Ada County Functional Street Classification map maintained at COMPASS shows the designated and approved collectors at the time of the plan. The layout of effective collectors depends on the following factors:

- The size and shape of vacant parcels in the area.
- The location of buildings (homes and businesses) and the configuration of existing neighborhoods and subdivisions.
- The location of nearby attractions such as schools, shopping centers and other services.
- The existing street system.
- Terrain, waterways, and other natural features such as wetlands.

With a well-developed arterial grid, on an approximate spacing of one mile, collectors shall be designed for the unique characteristics of each "section" of land. A section is a one-square mile area laid out when Ada County was originally surveyed. This grid pattern can be clearly seen in the southwest county area.

Emergency services (police, fire, and ambulance) have a strong interest in the patterns of collectors, since these frequently serve as the quickest routes. When collector and local street networks are too broken up, it can be difficult for emergency vehicles to navigate the resulting maze. This pattern can be seen and experienced by visitors in many subdivisions built in the past 20 years.

Some citizens have expressed interest in local and collector street patterns that resemble more "traditional" neighborhoods built before World War II. Called "grid" or "neo-traditional," this pattern can offer residents and visitors multiple ways to travel between points. This pattern is considered friendlier to pedestrians and bicyclists, since the routes to school, parks and services are shorter and more direct. Many residents remain concerned about the potential for "cut-through" traffic from a grid system. The concept of throughway or loop collectors also addresses internal circulation and continuity. These collectors dead end-end, possibly with a cul-de-sac, or are connected back to the originating arterial. This encourages traffic to stay on the arterials to reach the desired destination.
Preservation of Major Intersections

Major intersection changes generally involve construction of one or more ramps to handle turning vehicles. More “routine” intersection improvements (signalization, addition of turn lanes, medians, etc.) are considered “operational” improvements and are not addressed in the plan. The major intersections listed below are recommended for preservation, not construction, within the period of the plan with the exception of the Eagle Road/Fairview Avenue intersection. “Preservation” used in this chapter means saving a future option to improve the existing intersection design. (If not preserved, the ability to improve the intersection could be lost.)

Preliminary design work is needed to assist in preservation. Table 8 shows major intersections in Ada County designated for preservation. These intersections are circled on the Functional Classification System map maintained by COMPASS.

Table 8: Major Intersections for Preservation

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitol Blvd. / University Dr. / Boise Ave. Intersection</td>
<td>Boise Ave under crossing to improve existing 5-way intersection and to improve pedestrian and bicycle access to Boise State University.</td>
</tr>
<tr>
<td>Curtis Rd. / I-184 Interchange</td>
<td>Preserve land for an “urban interchange” based on the Bench/Valley Study. This Interchange would improve future congestion by adding special ramps.</td>
</tr>
<tr>
<td>Chinden Blvd. / Glenwood St.</td>
<td>Urban interchange to separate the grades of the intersection and use ramps to handle many of the turns (see Figure 21).</td>
</tr>
<tr>
<td>Chinden Blvd. / Veterans Memorial Parkway</td>
<td>Urban Interchange.</td>
</tr>
<tr>
<td>State St. / Glenwood St.</td>
<td>Urban interchange.</td>
</tr>
<tr>
<td>State St. / Veterans Memorial Parkway (36th St.)</td>
<td>Urban interchange.</td>
</tr>
<tr>
<td>Eagle Rd. / SH 44 Bypass</td>
<td>Urban Interchange.</td>
</tr>
<tr>
<td>Eagle Rd. / Chinden Blvd.*</td>
<td>Urban Interchange. Eagle Rd would pass under Chinden Blvd due to the proximity to the Bench.</td>
</tr>
<tr>
<td>Eagle Rd. / Franklin Rd.*</td>
<td>Urban interchange.</td>
</tr>
<tr>
<td>Eagle Rd. / Overland Rd.*</td>
<td>Urban interchange.</td>
</tr>
<tr>
<td>Eagle Rd. / Ustick Rd.*</td>
<td>Urban interchange.</td>
</tr>
</tbody>
</table>

* Related to Eagle Road limited access highway concept.

Certain intersections in Ada County have been identified for different engineering designs, known as urban interchange. Figure 21 shows a simple depiction of how this interchange would operate. Currently, Ada County does not have one. It is similar to an interchange on the freeway system, but the costs and amount of land necessary can be reduced given the lower speeds on the arterials. The major road is given priority by allowing through-traffic to continue without undue delay at the intersection. The turning movements are handled at ground level with a series of signals that need special coordination. Any access onto the major through street should be approximately 800 feet back from the interchange along the major through-street, which allows adequate room for the ramps.
Figure 21: Urban Interchange Design

* Source: Utah Department of Transportation, I-15 Reconstruction Project. Website address: http://www.i-15.com
Transportation Projects for Preservation

Many projects proposed for construction or preservation were considered during development of *Destination 2020*. Some of those projects have been carried over to *Destination 2025*. If the need arises, it is possible that projects with preservation status are moved up to construction.

Table 9 shows projects for preservation beyond 2020. "Preservation" used in this section is the same as in the previous: it means saving the option to improve the existing roadway in the future. Usually, preservation is triggered when a development or construction is proposed which would affect the ability to implement the transportation project. The implementing agency, Ada County Highway District or the Idaho Transportation Department in the care of roadways, may need to develop preliminary designs to help determine the alignment and right-of-way needs. Local governments with land-use planning authority, notably the cities and the County, also play a part in preservation by developing appropriate zoning and subdivision ordinances to ensure adequate set-backs along collector and arterial roadways and other major transportation corridors.

The determination by COMPASS to preserve these projects, rather than show them in the "Build" list (see Chapter 5: Major Roadway Projects), was based on evaluation of traffic model forecasts (i.e., projected levels of service) and financial constraints. Development and growth that differ greatly from the assumptions discussed in Chapter 1: General Transportation Issues could accelerate the need to build some of these projects.

Table 9: Transportation Projects for Preservation

<table>
<thead>
<tr>
<th>No.</th>
<th>Road</th>
<th>Location</th>
<th>Lanes</th>
<th>Construction Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2nd & 3rd Streets in Kuna</td>
<td>One way couplet Avalon St -Linder Rd</td>
<td>n.a.</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>2</td>
<td>Boise Ave. widening</td>
<td>Capitol Blvd to Broadway Ave</td>
<td>3</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>3</td>
<td>Boise Ave. widening **</td>
<td>Holcomb Rd to Eckert Rd</td>
<td>3</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>4</td>
<td>Cherry Lane widening</td>
<td>County Line to current</td>
<td>5</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>5</td>
<td>Chinden Blvd. widening</td>
<td>County Line to current</td>
<td>5</td>
<td>$12,000,000</td>
</tr>
<tr>
<td>6</td>
<td>Collister St. widening</td>
<td>State St. to Hill Rd.</td>
<td>3</td>
<td>$1,400,000</td>
</tr>
<tr>
<td>7</td>
<td>Eckert Bridge expansion **</td>
<td>At the Boise River</td>
<td>4+</td>
<td>$2,700,000</td>
</tr>
<tr>
<td>8</td>
<td>Five Mile Rd. Interchange ^</td>
<td>New interchange</td>
<td>n.a.</td>
<td>$125,000,000</td>
</tr>
<tr>
<td>9</td>
<td>I-84 widening ^</td>
<td>Gowen Rd to Isaac's Canyon Interchange</td>
<td>6</td>
<td>$6,000,000</td>
</tr>
<tr>
<td>10</td>
<td>Overland Rd widening ^^</td>
<td>Ten Mile Rd to SH 69</td>
<td>5</td>
<td>$6,500,000</td>
</tr>
<tr>
<td>11</td>
<td>State St widening</td>
<td>Collister St to 16th St</td>
<td>7</td>
<td>$9,400,000</td>
</tr>
<tr>
<td>12</td>
<td>Ten Mile Rd widening</td>
<td>Cherry Ln. to Overland Rd</td>
<td>3 to 5</td>
<td>$2,500,000</td>
</tr>
<tr>
<td>13</td>
<td>Ustick Rd widening</td>
<td>Ten Mile Rd to Cole Rd</td>
<td>5</td>
<td>$21,500,000</td>
</tr>
<tr>
<td>14</td>
<td>Warm Springs Ave widening</td>
<td>E. Park Center bridge crossing to new SH 21</td>
<td>3 to 5</td>
<td>$6,200,000</td>
</tr>
</tbody>
</table>

Total Estimated Cost

$199,300,000

*Costs estimated by Higgins Engineering in 1995 dollars and most costs have not been updated.

**Contingent upon corridor study described later in this chapter.

^Cost estimate from the I-84 Corridor Study in 2001 dollars.

^^Cost estimate figured using from ACHD's Five Year Work Program Budget in 2001 dollars.

Note: n.a. = new road or street.

Destination 2025 – Regional Transportation Plan for Ada County

Community Planning Association 63
Proposed Studies

COMPASS recommends several studies to address growth and safety issues in the next 25 years. These are included in Destination 2025 because they will address special, regional issues that require specific funding. Other studies will be proposed as the need arises. The following is a brief description of a few up and coming studies:

South Treasure Valley Arterial Corridor Study

This study is to preserve a new arterial corridor in the southern fringe of the Treasure Valley. Currently, an effective east/west connection in the southern part of Ada and Canyon Counties is nonexistent. The new corridor will connect I-84, south of Boise, to Highway 95, at the Snake River near Marsing. Also included is a north/south connection with I-84 north of Caldwell. This study is anticipated to take place in 2003, but actual construction of a new road is beyond the year 2020. This will be a cooperative effort between Ada and Canyon County governments.

State Street Corridor Study

This corridor has been designated as a special corridor management route. The study limits are 23rd Street to State Highway 55. The goal is to develop a long-range plan that will maintain or expand traffic capacity in the State Street corridor without major roadway widening. The study will evaluate ITS, transit, land use, access control, and intersection improvement options. The results will be a list of recommended improvements for the various segments of State Street and at what traffic thresholds the improvements should be implemented.

Collector Evaluations

Destination 2025 also recommends special, more localized studies for future budgeting. As operational improvements, most of these studies would fall under the jurisdiction of the Ada County Highway District.

Table 10: Collector Evaluations

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Realign Cartwright Rd. to 36th St.</td>
<td>Consider a possible dead end of Cartwright e/o 36th or jog to deter through traffic onto Harrison Blvd.</td>
</tr>
<tr>
<td>2</td>
<td>New east-west collector s/o RR tracks in Kuna.</td>
<td>Improve east-west traffic movement.</td>
</tr>
<tr>
<td>3</td>
<td>Linder to Star Rd., Chinden Blvd to State St.</td>
<td>Probability of development along scenic river area. Growth in Western Ada County. Possible new river crossing to SH 16.</td>
</tr>
</tbody>
</table>
Collector Evaluations, Ada County

Figure 22: Ada County Collector Evaluations Map
Street Classification System Policies

1. COMPASS will coordinate with cities and the County to get a uniform functional classification map adopted into area comprehensive plans.

2. COMPASS will coordinate with the cities, Ada County, the Ada County Highway District, and the Idaho Transportation Department to improve plans' and ordinances' abilities to preserve needed rights-of-way through adequate setbacks.

3. COMPASS will coordinate with the cities, Ada County, Ada County Highway District, Idaho Transportation Department, and developers to improve land use design standards along arterials and freeways.

4. COMPASS will request the Ada County Highway District to coordinate with local governments in developing a program of collector designs on a section-by-section basis. This work will require involvement of landowners and neighborhoods in the layout of effective collectors. COMPASS will work with the Ada County Highway District and other local governments to develop a collector designation process.

5. The following arterial roadways are considered Limited Access Highways and shall be given special consideration for access control:
 - State Highway 16 from the Ada County line south to Chinden Blvd.
 - State Highway 44 west from State Highway 55 (east leg) to the City of Star
 - US 20/26 from Mitchell Road to Can-Ada Road
 - State Highway 55 from I-84 north to the county line

6. COMPASS will work with local and state elected officials to increase funding for long-term preservation of rights-of-way, which could substantially reduce future costs and reduce conflicts with neighborhoods and businesses. One option to be considered should be a dedicated fund restricted to rights-of-way preservation. This fund could use tax options as discussed in Chapter 10.

7. COMPASS will distribute functional classification maps and standards to real estate agents, developers, lending agencies, appraisers, and other key participants in real estate and will work with these groups to consider ways of strengthening rights-of-way preservation.

8. COMPASS will create a "home buyers" brochure to provide information to citizens about checking on street classifications and plans prior to purchase. Develop an outreach program to improve the awareness of citizens about the functional classification system and long-term preservation needs.

9. COMPASS will work with the Ada County Highway District and the Idaho Transportation Department to develop preliminary designs for the projects listed for preservation in order to guide development and site designs.

10. COMPASS, in conjunction with other local governments in Ada and Canyon Counties, will conduct a South Treasure Valley Arterial Corridor Study to connect I-84 southeast of Boise to a yet-to-be-determined Canyon County terminus. Results will be added to the Functional Classification Map.

11. COMPASS will coordinate with Ada County Highway District and Boise City to develop an evaluation of the State-Jefferson couplet.

12. COMPASS will establish a new functional classification as a subset of Minor Arterial to be known as Rural Arterial. Recommend that the Ada County Highway District develop design standards. Request that the Ada County Highway District subsequently convene a task force to consider application of this new standard throughout Ada County in cooperation with Ada Planning Association.
13. COMPASS will support, in coordination with the Ada County Highway District, a study to identify specific alignment of the west county river crossing to align with State Highway 16.

14. COMPASS, in coordination with appropriate agencies, will evaluate a circulation pattern that would improve access from Boise City’s North End to major corridors to the west, such as the I-184 Connector, Chinden, Fairview and State.

15. COMPASS will work with the City of Star and Ada County Highway District in their comprehensive planning process to identify future collectors within the Star Area of Impact.

16. COMPASS will support and promote corridor management plans along State Street between Gary Lane and downtown Boise and along US 20/26 (Chinden) between the I-184 Connector and Mitchell Street. The plan will include approaches such as: new technology embodied in Intelligent Transportation Systems; corridor specific alternative transportation measures; and operational and intersection improvements to accommodate increased traffic rather than widening roadways.
Chapter 5:
Major Roadway Projects
Introduction

To continue the vitality of Ada County and the surrounding region and to accommodate inevitable growth, many major roadway projects have been committed and recommended for construction within the next 20 years. These projects will require a significant infusion of public money.

The projects listed in Table 11 and Table 12 include more than $639 million in capacity improvements to the roadways throughout Ada County. Of this figure, $34.5 million are Ada County Highway District projects; and $13.4 million are Idaho Transportation projects programmed over the next three years. The remaining $491 million are projects programmed over the next 20 years. Most of these were updated using the Ada County Highway District Budget and Five Year Work Program (FY 2002-06) and the State Transportation Improvement Program. In some cases, the cost estimates for projects were carried over from Destination 2020, which Higgins Engineering or HDR Engineering developed in 1995 and 1999 respectively. Table 13 addresses the financial need for recommended projects.

This chapter describes major roadway capital projects committed and recommended for construction over the next 20 years; potential new funding sources to meet the projected shortfall; and concludes with updated roadway project funding policies approved by the Community Planning Association (COMPASS) Board on April 15, 2002.

Most projects to improve collectors or local streets are not covered in this plan, since they fall under the operational planning and budgeting authority of the Ada County Highway District and Idaho Transportation Department. Maintenance, signalization, and other operational expenditures are not described in detail, but estimated costs are included in the financial evaluation discussed later in this chapter.

Issues Addressed in This Chapter

Numerous major roadway projects are committed and recommended for construction in the next 20 years that will have significant impact on regional travel. Based on financial projections, Ada County will fall short of funding needed to accomplish its long-range goals, which will require new funding sources in the future.
Committed Projects

The existing roadway system will be improved by major projects already committed in the capital programs of the Idaho Transportation Department and the Ada County Highway District. These projects are listed in Table 11 and can be found in the Transportation Improvement Program, FY 2002-2006 and Ada County Highway District's Capital Budget and Five Year Work Program (FY 2002-2006). Copies of the Transportation Improvement Program can be obtained at COMPASS and on the web at www.compassidaho.org.

Note: Details for projects were obtained from documents adopted and in effect as of December 31, 2001. Changes in proposed year, project scope and cost approved subsequent to December 31, 2001 are not reflected.

Table 11: Committed Transportation Projects

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>Location</th>
<th>Year</th>
<th>Estimated Cost (rounded to the nearest $100,000)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ada County Highway District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Fairview Ave.</td>
<td>Fairview Ave. and Cole Rd. (intersection improvement)</td>
<td>2004</td>
<td>$2,700,000</td>
</tr>
<tr>
<td>2</td>
<td>Federal Way</td>
<td>Bergeson St. - Lake Forest Dr.</td>
<td>2002</td>
<td>$4,200,000</td>
</tr>
<tr>
<td>3</td>
<td>Five Mile Rd.</td>
<td>Treeline Ct. - US 20/26 (Chinden Blvd.)</td>
<td>2002</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>4</td>
<td>Franklin Rd.</td>
<td>East 1st St. – Nola St.</td>
<td>2003</td>
<td>$6,600,000</td>
</tr>
<tr>
<td>5</td>
<td>Franklin Rd.</td>
<td>Nola St. – Eagle Rd.</td>
<td>2004</td>
<td>$3,100,000</td>
</tr>
<tr>
<td>6</td>
<td>Maple Grove Rd.</td>
<td>Franklin Rd. – Fairview Ave.</td>
<td>2004</td>
<td>$5,100,000</td>
</tr>
<tr>
<td>7</td>
<td>ParkCenter Blvd.</td>
<td>Boise River Crossing East (to Warm Springs Ave.)</td>
<td>2002</td>
<td>$3,200,000</td>
</tr>
<tr>
<td>8</td>
<td>Pine St.</td>
<td>Eagle Rd. – Cloverdale (developer funded)</td>
<td>2003</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>9</td>
<td>Overland Rd.</td>
<td>Meridian Rd. – Locust Grove Rd.</td>
<td>2004</td>
<td>$3,300,000</td>
</tr>
<tr>
<td>10</td>
<td>Victory Rd.</td>
<td>Cole Rd. – Orchard St.</td>
<td>2004</td>
<td>$3,500,000</td>
</tr>
<tr>
<td></td>
<td>Total Ada County Highway District Projects</td>
<td></td>
<td>$34,500,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idaho Transportation Department</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>I-84</td>
<td>Union Pacific RR Bridge - Gowan Overpass and improvements to Gowan EB off ramp</td>
<td>2003</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>12</td>
<td>US 20/26</td>
<td>Eagle Rd. - Cloverdale Rd.</td>
<td>2002</td>
<td>$3,100,000</td>
</tr>
<tr>
<td>13</td>
<td>US 20/26 (Chinden Blvd.)</td>
<td></td>
<td>2004</td>
<td>$2,900,000</td>
</tr>
<tr>
<td>14</td>
<td>US 20/26 (Chinden Blvd.)</td>
<td>HP Main Entrance - Joplin Rd.</td>
<td>2004</td>
<td>$5,400,000</td>
</tr>
<tr>
<td></td>
<td>Total Idaho Transportation Department Projects</td>
<td></td>
<td>$13,400,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Ada County Highway District & Idaho Transportation Department Projects</td>
<td></td>
<td>$47,900,000</td>
<td></td>
</tr>
</tbody>
</table>

All costs are given in 2002 dollars.

*Costs are based on best available information at time of report, and are subject to revision.

Projects shown in this list are generally limited to major capacity changes beyond 3 lanes on streets classified as minor arterials or higher. The list does not include capital projects such as intersection improvements, signalization, reconstruction, collector street construction, bridge reconstruction, etc. Some projects carried over from prior plans may be on collector streets or show 2/3 lane improvements.
Recommended Projects

How Projects Were Selected

Destination 2025 focuses on roadway projects that will have significant impact on regional travel. Therefore, the recommended projects listed in this chapter meet one or more of the following criteria:

- The project is on a classified arterial or interstate and the improvement would add one or more through-lanes
- The project is a new river or bench crossing on an arterial
- The project is of high significance to the community

Under federal air quality regulations, all proposed major transportation facilities must include design and scope descriptions in sufficient detail (including the number of lanes to be added and end points for the project), regardless of the funding source. This information is used in COMPASS' traffic forecast model to assess travel demand in the future (see Chapter 3). Results of this forecast are then used in another computer model to calculate future emissions. Estimated project costs are also listed to allow elected officials and citizens to compare total costs to the resources available. Refer to Table 13 at the end of this chapter.

Sources for the projects listed in this chapter include:

- *Destination 2020* (updated for the 2025 plan)
- Ada County’s FY 2002-2006 Transportation Improvement Program
- State Transportation Improvement Program for 2002-2006
- Citizens involved in the Community Team meetings
- Comprehensive plans of local governments
- The Bench/Valley Transportation Study
- I-84 Corridor Study
- Ada County Highway District’s Capital Budget and Five Year Work Program (FY 2002-2006)

Roadway Projects

During development of *Destination 2025*, COMPASS reviewed and amended projects listed in the previous plan. New projects were added only if they met the criteria noted above. Table 12 shows roadway projects recommended for construction over the next twenty years (excluding committed projects listed in Table 11). These projects are designated with corresponding numbers on the maps on the following pages. Details of the projects listed in Table 12 are found in Appendix 3:Major Roadway Project Details.

A list of proposed changes to the project tables was presented at the April 2002 COMPASS Board Meeting. After acceptance of these changes, the projects were added to the appropriate table. Some of the added projects did not have estimated costs; costs for such projects were estimated based on information available at the time this plan was updated.

Construction projects shown in this chapter are not intended to be used as the sole basis for calculating financial needs of the Ada County Highway District nor the Idaho Transportation Department. Therefore, the estimated capital needs cannot be used for calculating taxes and fees, specifically including impact fees. Nor should the capital needs identified in this chapter be interpreted as constraints on the planning and programming activities of either agency beyond the restrictions placed on the use of federal funding under relevant regulations.
Table 12: Transportation Projects Planned for Construction within the Next 20 Years

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>Location</th>
<th>No. Of Lanes</th>
<th>Estimated Cost (rounded to the nearest $100,000)</th>
<th>Responsible Party</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30th St (new road)</td>
<td>Main St – State St.</td>
<td>3</td>
<td>$4,200,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>2</td>
<td>36th St.</td>
<td>Extend 36th St from existing to Cartwright Rd and Bogus Basin Rd</td>
<td>2-3</td>
<td>$2,500,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>3</td>
<td>Amity Rd</td>
<td>Federal Way - realigned Eckert Rd</td>
<td>2-3</td>
<td>$2,100,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>4</td>
<td>Broadway Ave Bridge</td>
<td>At Boise River</td>
<td>6</td>
<td>$3,400,000</td>
<td>ITD</td>
<td>2020</td>
</tr>
<tr>
<td>5</td>
<td>Broadway IC</td>
<td>Reconstruct – add new ramps and lanes</td>
<td>N.A.</td>
<td>$13,500,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>6</td>
<td>Cole Rd</td>
<td>Victory Rd – Century Ln.</td>
<td>5</td>
<td>$1,900,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>7</td>
<td>Cole Rd</td>
<td>Overland Rd – Franklin Rd</td>
<td>4-5</td>
<td>$2,200,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>8</td>
<td>Eagle Rd & Fairview Ave</td>
<td>Construct Urban IC</td>
<td>N.A.</td>
<td>$7,000,000</td>
<td>ACHD/ITD</td>
<td>2020</td>
</tr>
<tr>
<td>9</td>
<td>Eckert Rd</td>
<td>Realign across Boise River - Amity Rd</td>
<td>2-3</td>
<td>$2,700,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>10</td>
<td>Emerald St</td>
<td>Five Mile Rd - Orchard St</td>
<td>5</td>
<td>$9,200,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>11</td>
<td>Federal Way</td>
<td>Isaac Canyon IC - s/o SH 21</td>
<td>5</td>
<td>$1,000,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>12</td>
<td>Five Mile Rd</td>
<td>Fairview Ave - Ustick Rd</td>
<td>3</td>
<td>$3,600,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>13</td>
<td>Five Mile Rd</td>
<td>Franklin Rd - Fairview Ave</td>
<td>5</td>
<td>$3,800,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>14</td>
<td>Franklin Rd</td>
<td>Eagle Rd – Five Mile Rd</td>
<td>5</td>
<td>$6,800,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>15</td>
<td>Glenwood St</td>
<td>US 20/26 (Chinden Blvd) – State St</td>
<td>7</td>
<td>$3,500,000</td>
<td>ITD</td>
<td>2020</td>
</tr>
<tr>
<td>16</td>
<td>Glenwood St / Cole Rd couplet</td>
<td>Two way couplet to Mountain View Dr</td>
<td>3</td>
<td>$2,600,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>17</td>
<td>Hill Rd</td>
<td>Gary Ln. – 36th St</td>
<td>2-3</td>
<td>$5,500,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>18</td>
<td>Holcomb Rd</td>
<td>Boise Ave – ParkCenter Blvd</td>
<td>3</td>
<td>$800,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>19</td>
<td>I-84</td>
<td>Garrity Rd IC – Ten Mile Rd IC</td>
<td>6</td>
<td>$12,200,000</td>
<td>ITD</td>
<td>2020</td>
</tr>
<tr>
<td>20</td>
<td>I-84</td>
<td>Ten Mile Rd – Eagle Rd</td>
<td>8</td>
<td>$17,500,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>21</td>
<td>I-84</td>
<td>Eagle Rd – Wye IC</td>
<td>8</td>
<td>$21,300,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>22</td>
<td>I-84</td>
<td>Curtis Rd – Broadway IC</td>
<td>8</td>
<td>$123,600,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>23</td>
<td>Kuna Mora Rd & SH 69 (Kuna-Meridian Rd)</td>
<td>Extend Kuna Mora Rd & SH 69 (Kuna-Meridian Rd) to connect</td>
<td>2-3</td>
<td>$8,000,000</td>
<td>ACHD/ITD</td>
<td>2020</td>
</tr>
<tr>
<td>24</td>
<td>Linder Rd</td>
<td>Franklin Rd to Ustick Rd</td>
<td>3</td>
<td>$4,400,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>25</td>
<td>Linder Rd extension / overpass</td>
<td>Extend over I-84</td>
<td>2-3</td>
<td>$1,000,000</td>
<td>ACHD/ITD</td>
<td>2020</td>
</tr>
<tr>
<td>26</td>
<td>Locust Grove Rd</td>
<td>Victory Rd - Overland Rd</td>
<td>5</td>
<td>$2,500,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>No.</td>
<td>Project</td>
<td>Location</td>
<td>No. Of Lanes</td>
<td>Estimated Cost (rounded to the nearest $100,000)*</td>
<td>Responsible Party</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>27</td>
<td>Locust Grove Rd</td>
<td>Franklin Rd – Fairview Ave</td>
<td>5</td>
<td>$2,700,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>28</td>
<td>Locust Grove Rd**</td>
<td>Overland Rd – Franklin Rd (EXCLUDING Overpass)</td>
<td>5</td>
<td>$4,300,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>29</td>
<td>Locust Grove Rd overpass**</td>
<td>Extend over I-84</td>
<td>4-5</td>
<td>$4,700,000</td>
<td>ACHD/ITD/ City of Meridian</td>
<td>2020</td>
</tr>
<tr>
<td>30</td>
<td>Maple Grove Rd</td>
<td>Overland Rd - Franklin Rd (including overpass)</td>
<td>5</td>
<td>$7,500,000</td>
<td>ACHD/ITD</td>
<td>2020</td>
</tr>
<tr>
<td>31</td>
<td>Maple Grove Rd</td>
<td>Victory Rd - Overland Rd</td>
<td>3</td>
<td>$1,900,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>32</td>
<td>Maple Grove Rd Extension**</td>
<td>McMillan Rd – Chinden Blvd</td>
<td>5</td>
<td>$5,900,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>33</td>
<td>Meridian Rd / E. 1st St, 1 way pair</td>
<td>Fairview Ave to I-84</td>
<td>2-3</td>
<td>$2,500,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>34</td>
<td>Meridian Rd IC</td>
<td>Improvement: cloverleaf ramp for WB I-84 to SB SH 69 (Kuna-Meridian Rd)</td>
<td>N.A.</td>
<td>$22,200,000</td>
<td>ITD</td>
<td>2020 / I-84 Study</td>
</tr>
<tr>
<td>35</td>
<td>Meridian Rd</td>
<td>Franklin Rd - Cherry Ln.</td>
<td>3</td>
<td>$500,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>36</td>
<td>Orchard IC</td>
<td>Reconstruct – add new ramps and lanes</td>
<td>N.A.</td>
<td>$17,000,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>37</td>
<td>Overland Rd</td>
<td>Locust Grove Rd - Eagle Rd</td>
<td>5</td>
<td>$2,700,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>38</td>
<td>Pine St - new</td>
<td>Locust Grove Rd – Eagle Rd (developer funded)</td>
<td>3</td>
<td>$1,800,000</td>
<td>ACHD/PRIVATE</td>
<td>2020</td>
</tr>
<tr>
<td>39</td>
<td>RR / Creek Crossing in Kuna</td>
<td>Location subject to evaluation</td>
<td>N.A.</td>
<td>$8,000,000</td>
<td>City of Kuna / Federal/Other</td>
<td>2020</td>
</tr>
<tr>
<td>40</td>
<td>SH 16 (Emmett Highway) river crossing</td>
<td>At Ten Mile Rd to connect SH 16 (Emmett Highway) - I-84 (connection location to be evaluated in the near future)</td>
<td>2-5</td>
<td>$22,900,000</td>
<td>ACHD / ITD</td>
<td>2020</td>
</tr>
<tr>
<td>41</td>
<td>SH 55</td>
<td>N/o Beacon Light Rd to Ada/Gem County line</td>
<td>5</td>
<td>$1,800,000</td>
<td>ITD</td>
<td>2020</td>
</tr>
<tr>
<td>42</td>
<td>Technology Way - new</td>
<td>S/o Micron to Isaac's Canyon IC</td>
<td>5</td>
<td>$3,300,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td>43</td>
<td>Ten Mile Rd</td>
<td>Franklin Rd – Pine Ave</td>
<td>5</td>
<td>$3,100,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>44</td>
<td>Ten Mile Rd</td>
<td>Pine Ave – Cherry Ln.</td>
<td>5</td>
<td>$1,300,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>45</td>
<td>Ten Mile Rd</td>
<td>Cherry Ln – Ustick Rd</td>
<td>5</td>
<td>$2,100,000</td>
<td>ACHD</td>
<td>New</td>
</tr>
<tr>
<td>No.</td>
<td>Project</td>
<td>Location</td>
<td>No. Of Lanes</td>
<td>Estimated Cost (rounded to the nearest $100,000)*</td>
<td>Responsible Party</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>46</td>
<td>Ten Mile Rd IC - new</td>
<td>At I-84</td>
<td>N.A.</td>
<td>$25,400,000</td>
<td>ITD</td>
<td>2020 / I-84 Study</td>
</tr>
<tr>
<td>47</td>
<td>Vista IC</td>
<td>Reconstruct – add new ramps and lanes</td>
<td>N.A.</td>
<td>$15,200,000</td>
<td>ITD</td>
<td>I-84 Study</td>
</tr>
<tr>
<td>48</td>
<td>Warm Springs Ave</td>
<td>Penitentiary Rd - w/o Barber Dr</td>
<td>N.A.</td>
<td>$2,900,000</td>
<td>ACHD</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>$426,500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Plus 15% for Mitigation and Public Involvement</td>
<td></td>
<td></td>
<td>$491,165,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All costs are given in 2002 dollars.

*Costs are based on best available information at time of report, and are subject to revision.

**Project phases were combined.
Transportation Projects, Rural Planning Area
Within the Next 20 Years

Figure 23: Rural Area Transportation Projects

See Boise and Garden City Planning Area Map

See figures 24 through 27 for more detailed information by community
Transportation Projects, Boise and Garden City Planning Areas Within the Next 20 Years

Figure 24: Boise/Garden City Transportation Projects
Transportation Projects, Downtown Planning Area
Within the Next 20 Years

Figure 25: Downtown Boise Transportation Projects
Transportation Projects, Kuna Planning Area

Within the Next 20 Years

Figure 26: Kuna Transportation Projects
Transportation Projects, Meridian Planning Area
Within the Next 20 Years

Figure 27: Meridian Transportation Projects
Funding Needs and Potential Resources

Table 13 summarizes the financial analysis done for the roadway element of Destination 2025, which envisions an estimated $491 million worth of capacity improvements to roadways throughout Ada County over the next twenty years. This estimate includes costs of construction, right-of-way purchase and provisions for mitigation where appropriate. In addition to these projects, Ada County Highway District has programmed and funded construction of another $34.5 million in capacity-increasing projects within the next three years.

Idaho Transportation Department's operating budget also is committed to maintenance needs. Idaho Transportation Department's portion for the recommended capacity improvements in Destination 2025 is assumed to be funded by federal transportation funds matched by the Idaho Transportation Department.

The Ada County Highway District financial analysis on Table 13 projects a shortfall of $6.8 million a year over the next twenty years. The analysis was completed by COMPASS using Ada County Highway District's Budget for fiscal year 2002. The analysis yielded the following conclusion: the Ada County Highway District must increase future revenue to support capacity expansion. Note that this calculation includes funding only for Ada County Highway District projects. The analysis also assumes that Ada County projects funded from state revenues would compete for funding with other statewide projects. The adequacy of federal and state funds is not addressed due to lack of state data.

Funds to cover Ada County Highway District's $6.8 million shortfall could conceivably come from a number of individual sources or some combination of several sources. A gasoline tax increase of at least one-half cent per gallon (all of which would go to Ada County roads) would generate approximately $6.8 million per year. Impact fees or vehicle registration fees would nearly double over the 2001 rates if either of them were expected to cover the entire shortfall.

Table 13: Estimated Financial Capacity, Local Roadway Projects

<table>
<thead>
<tr>
<th>Revenue Source</th>
<th>Average Annual Revenue (rounded to the nearest $100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Taxes</td>
<td>$18,300,000</td>
</tr>
<tr>
<td>State Highway User Fund</td>
<td>$18,700,000</td>
</tr>
<tr>
<td>Ada County Vehicle Registration Fees</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>Development Impact Fees</td>
<td>$8,100,000</td>
</tr>
<tr>
<td>All other sources</td>
<td>$13,600,000</td>
</tr>
<tr>
<td>Total</td>
<td>$62,200,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Expenses</th>
<th>Average Annual Expenses (rounded to the nearest $100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative, Legal, Commission</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>Right-of-Way (operating)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Traffic</td>
<td>$4,500,000</td>
</tr>
<tr>
<td>Maintenance and Operations</td>
<td>$13,000,000</td>
</tr>
<tr>
<td>Capital Improvements plus Projected Average Annual 2025 Roadway Project Cost</td>
<td>$40,300,000</td>
</tr>
<tr>
<td>Commuterides</td>
<td>$1,700,000</td>
</tr>
<tr>
<td>Average Annual Ada County Highway District Expenses</td>
<td>$69,000,000</td>
</tr>
<tr>
<td>Revenues versus Expenses</td>
<td>($6,800,000)</td>
</tr>
<tr>
<td>Revenues Needed</td>
<td>($6,800,000)</td>
</tr>
</tbody>
</table>

All costs and revenues shown in current dollars. No inflation factors were applied.
Major Roadway Projects Policies

1. COMFASS will coordinate with local officials to pursue potential revenue enhancement from combinations of impact fees, increased gasoline tax dedicated in Ada County, vehicle registration fee increases dedicated to Ada County, and perhaps other local option taxing authority to raise fees and taxes in support of 20-year transportation needs.

2. COMFASS will develop a reliable model for projecting costs and revenue for transportation needs that addresses maintenance and capacity improvements and prioritizes alternate transportation and demand management strategies.

3. COMFASS will continue to encourage, promote, and assist in the implementation of the Intelligent Transportation Systems Phase II Plan in the Treasure Valley.

4. COMFASS will continue to work with Ada County Highway District and local governments in the review of subdivisions for circulation issues, alternative transportation opportunities, and regional transportation plan compliance.

5. COMFASS will review the Mitigation Guidelines shown in Appendix 1-A: Mitigation Guidelines Summary in coordination with Ada County Highway District and local governments in Ada County.
This page left intentionally blank
Chapter 6:
Environmental Issues
This page left intentionally blank
Introduction

To maintain a healthy environment, transportation planning must evaluate a wide range of potential environmental impacts that could result from future projects. Reasonable efforts must be made to prevent negative environmental impacts. This chapter summarizes the findings of an air-quality conformity study and the potential environmental impacts associated with the roadway capital project corridors identified in Chapter 5.

In March 2002, COMPASS staff conducted an air quality conformity determination of Destination 2025, in compliance with the requirements of the 1990 Clean Air Act Amendment. Other key environmental issues have been identified and evaluated by consultants who conducted two initial visual evaluations along future project corridors.

Ecological Design, Inc., conducted the evaluation in 1996 for Destination 2015, and Science Applications International Corporation conducted the evaluation for the projects added in 1999 during the Destination 2020 update. The evaluation methods were different for projects originally listed in Destination 2015 and those added because of updates for Destination 2020.

These evaluations were not intended to meet requirements of an Environmental Assessment required under the National Environmental Policy Act for projects involving federal funding or other federal actions because actual design, alignment, width and other details are unknown at the planning stage.

This chapter summarizes the following key environmental issues:

- Conformity with air quality regulations
- Traffic noise
- Natural resources
- Historical and cultural resources
- Hazardous areas
Key Environmental Issues

Transportation projects can have a wide range of environmental impacts that require careful attention during the planning stages. Following is a description of environmental resources that were evaluated for this document, starting with two key issues — air quality and noise.

Conformance with Air Quality Regulations

COMPASS is designated as the lead agency for developing a Carbon Monoxide State Implementation Plan (CO SIP) for Northern Ada County through an agreement with the Idaho Department of Health and Welfare's Division of Environmental Quality. In March 2002, COMPASS staff conducted an Air Quality Conformity Determination for Destination 2025 as required by the 1993 and 1997 Federal Conformity Regulations (40 CFR 51 and 93). The study concluded that Destination 2025 met all Air Quality Conformity requirements applicable to Ada County at the time.

Status of CO Emissions in Ada County

National health standards require that an area's 8-hour concentration of CO be less than nine parts per million (ppm). In spite of recent population and traffic growth in Ada County, CO standards have not been violated since 1987.

This Air Quality Conformity Determination is based on the latest calibration of the COMPASS travel-forecasting model, the latest update of the roadway network, and the latest demographic projections for the area. The background of the Air Quality Conformity Determination is summarized below, and methods and results are further discussed in Appendix 4:Air Quality Conformity Determination. A full report on air quality conformity is also available at the COMPASS office ("Final Carbon Monoxide Conformity Demonstration of Destination 2025," COMPASS Report No. 6-2002).

Background

Through an agreement with the State Department of Environmental Quality, COMPASS is designated as the "lead agency" for development of the CO State Implementation Plan (SIP) for northern Ada County. Ada County is a Not Classified non-attainment area for CO. The county has not experienced a violation of the National Ambient Air Quality Standards (NAAQS) for CO since 1987. As such, the area is not required to comply with a submitted emission budget for CO.

Before March 12, 1999, Ada County was also designated a non-attainment area for particulate matter (PM$_{10}$). On that date, the Environmental Protection Agency's (EPA) Administrator signed the revocation of Ada County's Pre-existing PM$_{10}$ Standards and its associated non-attainment designation. This ruling was challenged in the 9th District Court. On Jan. 31, 2001, the U.S. Department of Justice approved a settlement agreement directly related to this legal challenge. A major component of the settlement involves an update to the PM$_{10}$ SIP for Ada County that must be completed and approved by the EPA before Oct. 1, 2003. Until the PM$_{10}$ Maintenance Plan's completion, local agencies must reduce PM$_{10}$ emissions through a variety of control measures. Presently, Ada County is the only area in the nation without an NAAQS for PM$_{10}$, although the county is subject to the statewide PM$_{10}$ standards established by the Idaho Department of Environmental Quality (DEQ).

Status of Plans

CO State Implementation Plan: In 1982 and 1984, the APA developed an Air Quality Improvement Plan as required by the 1977 Clean Air Act. In 1994, the Transportation Control Measures were revised to establish achievable goals for the next three years. These revisions were approved by the Environmental Protection Agency in January 1995. The Department of Environmental Quality developed and submitted a Limited Maintenance Plan for Carbon Monoxide in Northern Ada County to the EPA in December 2001.

PM$_{10}$ State Implementation Plan: The State of Idaho submitted a PM$_{10}$ State Implementation Plan (SIP) to the Environmental Protection Agency in 1991 that identified wood burning as a major source of PM$_{10}$ in the area. A PM$_{10}$ Contingency Plan was submitted to the EPA in July.
1995 that included roadway-sweeping practices aimed at reducing fugitive dust after sanding in the winter. This practice was adopted by the Idaho Transportation Department and Ada County Highway District. However, the PM\textsubscript{10} State Implementation Plan is rather ambiguous in demonstrating the share of mobile PM\textsubscript{10} sources, includes no Transportation Control Measures for PM\textsubscript{10} emissions, and is based on outdated data. On March 12, 1999, the EPA changed Ada County's FM\textsubscript{10} designation, and as a result, the PM\textsubscript{10} Plan is no longer applicable to Ada County, unless the Court declares otherwise. As a requirement of the PM\textsubscript{10} lawsuit, the DEQ is preparing a PM\textsubscript{10} Maintenance Plan for Ada County that will be submitted to the EPA by Oct. 1, 2002.

Interagency Consultation

On March 30, 2001, the Idaho State Legislature approved the proposed regulations associated with the conformity implementation plan for the state of Idaho. These rules were submitted to the EPA and public comment was solicited under the Federal Register publication dated April 12, 2001. The EPA received no public comment on the rules, and the State of Idaho Conformity Implementation Plan became effective on June 11, 2001. The Conformity SIP requires that affected areas establish an interagency consultation committee (ICC). The first official meeting of the Ada County ICC was held on March 16, 2001. The procedures and methodologies employed in the development of the Destination 2025 Long Range Transportation Plan were reviewed and approved by the ICC on March 3, 2002.

Transportation Control Measures

Destination 2025 supports the goals of the applicable CO State Implementation Plan by providing timely implementation of its Transportation Control Measures, which include the following:

Promotion of Transit: The 1995 CO SIP established a bus ridership goal of 1.12 million by 1997. Because of intensive planning and promotion, ridership passed 1.3 million in 1995 and 1.2 million in 1996 and 1997. By 2001, however, transit ridership dropped to 1.14 million, indicating the ongoing challenge facing the community in promoting use of alternatives. To foster the implementation of transit services, COMPASS supported the creation of a regional public transportation authority in 1998. This authority, known as ValleyRide, recently drafted a transit development plan laying out broad goals for public transportation services and expenditures. It strives to meet the vision of obtaining 25 percent of the travel by alternative transportation for the region. Policies to meet this vision are included in Chapter 7, Public Transportation.

Promotion of Rideshare Program: The Commuteride Program expanded its fleet of vans from 28 in 1996 to 35 in 2001, serving 30 routes, which resulted in a corresponding rideshare participation increase.

Figure 28: Commuteride Van
Countywide Auto Inspection and Maintenance Program: The efficiency of the annual auto inspection program has been significantly enhanced in recent years by monitoring additional pollutants lowering emission thresholds, separating test and repair sites and implementing two-speed testing.

Expanded Network of Pathways for Bikes and Pedestrian: The County’s pathway system continues to expand as agencies cooperate to provide pleasant alternatives to automobile travel.

Summary of Conformity

The summary results for CO are shown in Table 14. A comparison of a scenario which assumes implementing projects recommended in this document (“build”) to a scenario which assumes doing nothing (“baseline”) shows that implementing the projects included in Destination 2025 (build scenario) do result in a net reduction in CO.

Table 14: Comparing No-Build Scenario to Build Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT (VMT/day)</th>
<th>Average Speed (mph)</th>
<th>CO Factor (g/mile)</th>
<th>CO Emissions (kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>12,635,093</td>
<td>25.1</td>
<td>20.32</td>
<td>256,745</td>
</tr>
<tr>
<td>Build</td>
<td>12,493,386</td>
<td>27.0</td>
<td>18.61</td>
<td>232,502</td>
</tr>
<tr>
<td>Difference</td>
<td>141,707</td>
<td></td>
<td></td>
<td>24,243</td>
</tr>
</tbody>
</table>

Traffic Noise Levels

Traffic noise is a common complaint from citizens and one of the most difficult environmental issues to resolve. Sound is measured in decibels, a unit of sound pressure abbreviated as dB. An increase of 10 dB indicates a doubling of the noise energy. Noise experts use a weighted level of measurement, known as dBA, designed to reflect the sensitivity of the human ear to certain frequencies. To measure noise similar to the way people hear, sound meters are adjusted to the dBA standard – reducing the effects of low and high frequencies and emphasizing the medium frequencies. The resultant sound level is said to be A-weighted or dBA.

Traffic-related noise levels can be considered in two ways:

- The first, and easiest for citizens to understand, is peak noise level. This is the “spike” of noise during the noisiest 10 percent of the noisiest hour of the day. It is called L10, referring to the 10 percent spike period.

- The second, and more common, method is the average sound level over a longer period. It is considered more reliable for lower volume roadways. This method, called Leq (for “equalized”), permits noise levels from different sources to be added to one another for inclusion in noise analyses.

Federal guidelines require that mitigation be considered when noise from a proposed project exceeds 67 dBA (Leq) for residences, parks and schools, and 72 dBA (Leq) for commercial and industrial uses. For typical traffic conditions, Leq is usually about three dBA less than L10. Table 15 shows noise levels and public reactions.
Table 15: Common Noise Levels and Public Reactions

<table>
<thead>
<tr>
<th>Noise Level (dBA)</th>
<th>Common Indoor Noise Levels</th>
<th>Common Outdoor Noise Levels</th>
<th>Public Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Rock band</td>
<td>Jet flyover at 1,000 feet</td>
<td>Organized protest and/or legal action</td>
<td></td>
</tr>
<tr>
<td>100 Inside subway train</td>
<td>Gas lawn mower at 3 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 Food blender at 3 feet</td>
<td>Diesel truck at 50 feet</td>
<td>Letters of protest</td>
<td></td>
</tr>
<tr>
<td>80 Garbage disposal at 3 feet</td>
<td>Lawn mower at 100 feet</td>
<td>Complaints likely</td>
<td></td>
</tr>
<tr>
<td>70 Vacuum cleaner at 10 feet</td>
<td>Commercial area</td>
<td>Complaints possible</td>
<td></td>
</tr>
<tr>
<td>60 Large business office</td>
<td>Heavy traffic at 300 feet</td>
<td>Complaints rare</td>
<td></td>
</tr>
<tr>
<td>50 Dishwasher in next room</td>
<td>Quiet urban daytime</td>
<td>Acceptance</td>
<td></td>
</tr>
<tr>
<td>40 Small conference room</td>
<td>Quiet urban nighttime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Bedroom at night</td>
<td>Quiet suburban nighttime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Concert hall (background)</td>
<td>Quiet rural nighttime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Broadcast and recording studio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Threshold of hearing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Source: Caltrans Noise Manual, California State Department of Transportation, March 1980

Measuring and predicting noise levels requires information or assumptions about the following:

- Design hourly volumes (DHV) for cars, light trucks and heavy trucks
- Speed of traffic
- Curves and grades along the street, which could affect noise through braking or acceleration

Analysts use noise models to predict the distance between the centerline of the road and the point at which an acceptable noise level is reached. The Federal Highway Administration requires mitigation be considered when noise levels exceed the above standards and noise attributable to a proposed project increases 10 to 15 dBA. Generally, mitigation is considered only when a roadway is built or reconstructed – not simply because traffic volumes have increased on a road. Noise mitigation is also a consideration when rail facilities, including those for commuter service, are built.
How Traffic Volume Affects Noise

2000 vehicles per hour sound twice as loud as 200 vehicles per hour

How Speed Affects Traffic Noise

Traffic at 65 miles per hour sounds twice as loud as traffic at 30 miles per hour

How Trucks Affects Traffic Noise

One truck at 55 miles per hour sounds as loud as 28 cars at 55 miles per hour

Figure 29: Issues Affecting Traffic Noise

Available Noise Mitigation Measures

A variety of methods is available to reduce noise levels, including the following:

Earth mounds or high, vertical walls between a highway and homes. Earth mounds, known as berms, have a natural appearance and are usually attractive, but require more land the higher they are built. Walls, built with wood, stucco, concrete, masonry, metal and other materials, use less space and are usually limited to about 26 feet high for structural and aesthetic reasons. Many attempts are being made in Idaho and throughout the county to construct noise barriers that are visually pleasing and that blend with their surroundings. Such requirements will be met by the implementing agency prior to the carrying out of each project.

Barrier designs are analyzed using a computer model to determine if mitigation can reduce noise to acceptable levels. Effective barriers can reduce noise levels by 10 to 15 decibels, or about in half. The Federal Highway Administration rules allow the individual states to set their own criteria for when noise barriers are considered, and the Idaho Transportation Department considers noise walls only if the reduction is greater than 3 dBA, which is the lowest change audible to most people. Noise barriers can most effectively reduce noise within approximately 200 feet of a highway. As the "receptors" of noise—homes, schools, etc.—get farther from the highway, the benefits of the barrier drop sharply. Table 16 summarizes barrier effectiveness.
Table 16: Effectiveness of Barriers on Noise Reduction

<table>
<thead>
<tr>
<th>Reduction in Sound Level</th>
<th>Reduction in Acoustic Energy</th>
<th>Degree of Difficulty To Obtain Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 dBA</td>
<td>70%</td>
<td>Simple</td>
</tr>
<tr>
<td>10 dBA</td>
<td>90%</td>
<td>Attainable</td>
</tr>
<tr>
<td>15 dBA</td>
<td>97%</td>
<td>Very Difficult</td>
</tr>
<tr>
<td>20 dBA</td>
<td>99%</td>
<td>Nearly Impossible</td>
</tr>
</tbody>
</table>

Barriers do have limitations. They must be high enough and long enough to block the view of a road. They do little for homes on a hillside overlooking a road or for buildings that rise above the barrier. Openings in noise walls for driveway connections or intersecting streets greatly reduce the effectiveness of barriers, and in some areas, homes are too far apart to allow construction of noise barriers at a reasonable cost.

Figure 30: House with Barriers

Vegetation

Traffic noise can be reduced by vegetation that is high, wide and dense enough. A 200-foot width of dense vegetation can reduce noise by 10 decibels, or about 50 percent. It is not feasible to plant enough vegetation along existing roads to achieve such reductions, but existing or new vegetation can provide psychological relief, if not an actual lessening of traffic noise levels.

Insulating buildings

Highway traffic noise can be greatly reduced by sealing windows, cracks and other openings in buildings or by placing noise-absorbing material in the walls of new buildings during construction.

Buffer zones

These undeveloped open spaces bordering a roadway prevent future dwellings from being constructed close to highways where they would be exposed to excessive noise. Buffers are usually created through land-use regulations that require greater setbacks between the road and buildings, but some are created when a highway agency purchases land or development rights in addition to the normal right-of-way. They also can improve roadside appearance.

Inventory of Environmental Issues along Recommended Construction Project Corridors

Following is a brief overview and summary of results of the visual environmental survey of project corridors listed in the Destination 2025 plan. Some of the survey work was done in 1996 for Destination 2015, while other work was done for projects added during Destination 2020. Detailed data from the surveys are available at COMPASS. Not all projects listed in Chapter 5 were analyzed.

The visual environmental survey of projects listed in the Destination 2020 plan identified a range of potential environmental concerns in many project corridors. Table 17 through Table 20 provide an overview of the issue areas by project location. Counts listed on Table 20 refer to numbers of land parcels with potential environmental resources or issues. Because of the general nature of this environmental survey, detailed identification and analysis of these issues await later stages of the transportation planning process.

Waterways and Wetlands

The Federal Highway Administration requires that projects receiving federal funds avoid impacts and take all practicable measures to minimize harm to wetlands (DOT Order 5660.1A). Perennial streams, which flow throughout the year within a defined bed and banks, are under the jurisdiction of the Idaho Department of Water Resources and subject to regulation under the Idaho Stream Channel Protection Act. Perennial and intermittent streams and adjacent wetlands are normally considered waters of the United States under the jurisdiction of the U.S. Army Corps of Engineers (COE) and subject to regulation by Section 404 of the Federal Clean Water Act.

Wetlands are identified by methods prescribed by the U.S. Army Corps of Engineers, which normally requires a predominance of water-loving vegetation, certain soil types and wetland hydrology to be considered a wetland under U.S. Army Corps of Engineers jurisdiction. Although uncommon, irrigation ditches are sometimes identified as wetlands.

Biological Resources

Most of the areas affected by construction projects are developed, agricultural or heavily disturbed. Most upland vegetation habitats are dominated by invasive weedy species, with generally few native shrubs. Riparian corridors are also in a relatively disturbed state. The lack of records reporting rare sensitive or protected species within the project areas indicates low habitat quality, which suggests low species diversity across the study area. However, many disturbance-tolerant and other species persist, particularly in areas where there is water.

Among the key issues are:

- Canals support an assortment of waterfowl, including ducks and Canada geese.
- Shorebirds and wading birds, such as avocets, long-billed curlews and great blue herons occur in appropriate habitat patches.
- In upland habitats, raptors range across many open areas to forage.
- Some ground-nesting raptor species use small bits of protected habitat for breeding.
- Western burrowing owls are found in great numbers in the southern portion of the study area. Portions of project areas near Kuna and Mora likely support breeding activity for these owls.
- Based on occurrence records, certain rare plants, including slickspot peppergrass and Aase’s onion may become site-specific issues in the northern and southern peripheries of the study area.
Gravel bars in the Boise River support populations of shining flatsedge.

Several known threatened, endangered or candidate species were identified within the study corridors (see Table 17 and Table 20). Federal actions, including federal funding, permitting or land-use management are subject to Section 7 of the Endangered Species Act of 1973. Non-Federal actions must not "harm" a threatened or endangered species. Candidate species have no protection under the Endangered Species Act of 1973, however they may be listed as threatened or endangered in the future.

Historic and Archeological Resources

Transportation projects can affect historic and archeological resources during and after construction. A proposed roadway or rail corridor may require land occupied by these resources, meaning a building would need to be demolished or relocated or an archeological site be evaluated prior to earthwork. Knowing where these properties exist is an important step in mitigation during project design.

The National Register of Historic Places is the National Park Service's official list of the nation's cultural resources deemed worthy of preservation. In Idaho, it is administered by the Idaho State Historical Society. Properties listed in the National Register include districts, sites, buildings, structures, and objects that are significant in American history, architecture, archeology, engineering, and culture. These resources contribute to an understanding of the historical and cultural foundation of the nation.

Properties nominated to the Register are generally at least 50 years old and are significant in terms of one or more of the following criteria:

- Are significant in American history, architecture, archeology, engineering and culture.
- Possess integrity of location, design, setting, materials, workmanship, feeling and association.
- Associated with events that made a significant contribution to our history.
- Associated with the lives of persons significant in our past.
- Embody the distinctive characteristics of a type, period or method of construction, represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction.
- Have yielded, or may be likely to yield, information important in prehistory or history.

Many of the project locations cross over urban, suburban, or rural agricultural lands. According to files at the Idaho State Historic Preservation Office, all recorded cultural resources within the project areas are architectural or engineering resources, primarily relating to agriculture.
Many historic architectural resources in the towns of Meridian and Star are not yet recorded in state records or evaluated for National Historic Register significance, although some may have been recorded by local historical societies. One National Register-listed site was identified, the E.F. Hunt House in Meridian, which was built by the renowned firm of Tourtelotte and Hummel in 1913.

Other historic resources such as farmsteads, agricultural buildings and irrigation and railroad features also lie within the project corridors. These include a number of sites eligible for the National Register of Historic Places such as the route of the Oregon Short Line Railroad (now the Union Pacific Railroad) near Kuna, constructed in the early 1900s.

Hazardous Areas

Gas stations with underground gasoline and diesel storage tanks were the predominant hazardous area within the project locations. These tanks are regulated by the Department of Environmental Quality, which maintains a list of underground storage tanks that have some level of contamination ranging from minor concentrations of petroleum in shallow soils to severe groundwater contamination. Eight leaking tanks were identified along project corridors.

No Superfund sites were located along or adjacent to the project corridors.

Examples of other areas that may have potential for hazard classification are a dry cleaners shop and an abandoned manufacturing facility/machine shop along Meridian Road, and commercial building and agricultural supply stores.

These types of business may use or sell chemicals such as fertilizers and pesticides that could be considered harmful to the environment. Fire stations and an abandoned manufacturing site within project corridors also have a safety concern.
Environmental Evaluation Summary

Information developed from the inventories is summarized in Table 17 through Table 20.

Table 17: Natural Resource Inventory

<table>
<thead>
<tr>
<th>No.</th>
<th>Project Name</th>
<th>Waterways</th>
<th>Wetlands</th>
<th>Important Habitat</th>
<th>Known Threatened or Endangered Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Broadway Ave Bridge</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Bald eagle</td>
</tr>
<tr>
<td>7</td>
<td>Cole widening: Overland Rd - Franklin Rd</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>None identified</td>
</tr>
<tr>
<td>10</td>
<td>Emerald: Five Mile Rd - Orcharc St</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>None identified</td>
</tr>
<tr>
<td>11</td>
<td>Federal Way - Isaac Canyon to south of SH 21</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Wovenspore lichen</td>
</tr>
<tr>
<td>14</td>
<td>Franklin: Five Mile Rd - Meridian Rd</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>None identified</td>
</tr>
<tr>
<td>15</td>
<td>Glenwood: Chinden Blvd - State St</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Bald eagle - wintering area</td>
</tr>
<tr>
<td>16</td>
<td>Glenwood / Cole</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>None identified</td>
</tr>
<tr>
<td>17</td>
<td>Hill Road: Gary Lane - 36th</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Aase onion - C1 candidate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mulford's milkvetch - C1 candidate</td>
</tr>
<tr>
<td>18</td>
<td>Holcomb Rd - Boise Ave - ParkCenter Blvd</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Bald eagle - wintering area</td>
</tr>
<tr>
<td>19</td>
<td>I-84: Ada County Line - Meridian Rd (part of two projects)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>20</td>
<td>I-84: Curtis Rd - Broadway IC</td>
<td>X</td>
<td>X</td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>30</td>
<td>Maple Grove Rd: Overland Rd - Franklin Rd</td>
<td>X</td>
<td>X</td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>No.</td>
<td>Project Name</td>
<td>Waterways</td>
<td>Wetlands</td>
<td>Important Habitat</td>
<td>Known Threatened or Endangered Species</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurisdictional</td>
<td>Non-Jurisdictional</td>
<td>Jurisdictional</td>
<td>Non-Jurisdictional</td>
</tr>
<tr>
<td>33</td>
<td>Meridian Rd/E. 1st 1 way pair Fairview to I-84</td>
<td>X</td>
<td></td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>34</td>
<td>Meridian Rd Interchange Improvement</td>
<td></td>
<td></td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>38</td>
<td>Pine St nw: Locust Grove to Eagle Rd</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td>None identified</td>
</tr>
<tr>
<td>39</td>
<td>Railroad and Creek Crossing in Kuna</td>
<td>X</td>
<td>X</td>
<td>X X X X</td>
<td>Interior redband troutSlickspot peppergrass</td>
</tr>
<tr>
<td>42</td>
<td>Technology Way: south of Micron - Isaac Canyon Interchange</td>
<td>X</td>
<td>X</td>
<td>X X X X</td>
<td>Wovenspore lichen</td>
</tr>
</tbody>
</table>

1 - Waterfowl habitat - includes feeding, loafing, and nesting habitat
2 - Songbird habitat - includes feeding, loafing, and nesting habitat
3 - Small mammal habitat - includes feeding, shelter, and breeding, habitat
4 - Large mammal habitat - includes feeding, shelter, and breeding, habitat
5 - Great blue heron habitat - includes feeding and loafing habitat

Source: Ecological Design
Table 18: Estimated Noise Distances

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>Estimated Distance (in feet) From the Center Line at Which Noise Could Exceed FHWA Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>4</td>
<td>Broadway Ave Bridge over the Boise River</td>
<td>140' *</td>
</tr>
<tr>
<td>10</td>
<td>Emerald St: Five Mile Rd - Orchard St</td>
<td>50' *</td>
</tr>
<tr>
<td>11</td>
<td>Federal Way: Isaac Canyon IC - south of SH 21 to</td>
<td>90'</td>
</tr>
<tr>
<td>14</td>
<td>Franklin Rd: Eagle Rd - Five Mile</td>
<td>45'</td>
</tr>
<tr>
<td>15</td>
<td>Glerwood St.: Chinden Blvd to State St</td>
<td>140' **</td>
</tr>
<tr>
<td>16</td>
<td>Glerwood St/ Cole Rd couple: two way couple to Mountain View Dr.</td>
<td>No existing roadway</td>
</tr>
<tr>
<td>17</td>
<td>Hill Rd: Gary Ln. to 36th St.</td>
<td>25'</td>
</tr>
<tr>
<td>18</td>
<td>Holcomb Rd: Boise Ave - ParkCenter Blvd</td>
<td>No existing roadway</td>
</tr>
<tr>
<td>19</td>
<td>I-84: Garrity Rd - Ten Mile Rd</td>
<td>475'</td>
</tr>
<tr>
<td>20</td>
<td>I-84: Ten Mile Rd - Eagle Rd</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>I-84: Curtis Rd to Broadway Interchange</td>
<td>475'</td>
</tr>
<tr>
<td>30</td>
<td>Maple Grove: Overland Rd - Franklin Rd</td>
<td>70</td>
</tr>
<tr>
<td>33</td>
<td>Meridian Rd & East 1st St, 1 way pair: Fairview Ave to I-84</td>
<td>35' *</td>
</tr>
<tr>
<td>34</td>
<td>I-84: Meridian Interchange: improvement of c/ooverleaf ramp WB I-84 to SB SH 69</td>
<td>225'</td>
</tr>
<tr>
<td>38</td>
<td>Pine St new: Locust Grove Rd to Eagle Rd</td>
<td>No existing roadway</td>
</tr>
<tr>
<td>39</td>
<td>Railroad / Creek crossing in Kuna</td>
<td>No predicted traffic volume and speed available</td>
</tr>
<tr>
<td>42</td>
<td>Technology Way: south of Micron - Isaac’s Canyon Interchange</td>
<td>No existing roadway</td>
</tr>
</tbody>
</table>

Source: Ecological Design

* Estimate is high for predicted speed since the lower limit of STAMINA 2.0 is 30 mph.

** Predicted volumes under lower limit of STAMINA 2.0 of 1000 vehicles per hour.
Table 19: Housing Inventory

<table>
<thead>
<tr>
<th>No.</th>
<th>Road</th>
<th>Area</th>
<th>50 ft.</th>
<th>100 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Broadway Ave Bridge</td>
<td>At the Boise River</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>Cole Rd</td>
<td>Overland Rd - Franklin Rd</td>
<td>None</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Emerald St.</td>
<td>Five Mile Rd - Orchard St.</td>
<td>None</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Federal Way</td>
<td>Isaac’s Canyon IC - South of SH 21</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>14</td>
<td>Franklin Rd</td>
<td>Eagle Rd - Five Mile Rd</td>
<td>None</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>Glenwood St widening</td>
<td>Chinden Blvd - State St.</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>Glenwood St./Cole Rd couple</td>
<td>Glenwood St & Cole Rd - Mountain View Dr</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>Hill Rd</td>
<td>Gary Ln - 36th St</td>
<td>14</td>
<td>154</td>
</tr>
<tr>
<td>18</td>
<td>Holcomb Rd</td>
<td>Boise Ave - ParkCenter Blvd</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>I-84</td>
<td>Garrity Rd - Ten Mile</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>I-84</td>
<td>Ten Mile Rd - Eagle Rd</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>22</td>
<td>I-84 widening</td>
<td>Cole Rd - Broadway Interchange</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>30</td>
<td>Maple Grove Rd widening</td>
<td>Overland Rd - Franklin Rd</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>33</td>
<td>Meridian Rd & E.1st St. one way pair</td>
<td>Fairview Ave - I-84</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>34</td>
<td>Meridian Rd Interchange</td>
<td>Improvement of cloverleaf ramp WB I-84 to SB SH 69</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>38</td>
<td>Pine St new</td>
<td>Locust Grove Rd - Eagle Rd</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>39</td>
<td>RR/Creek crossing in Kuna</td>
<td>Location to be evaluated</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>42</td>
<td>Technology Way</td>
<td>Hwy 21 - Isaac’s Canyon IC</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Ecological Design

Table 20: Project Environmental Inventory

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>Wetlands</th>
<th>Stream/Canal Crossings</th>
<th>Sensitive Plants</th>
<th>Sensitive Wildlife</th>
<th>Fisheries</th>
<th>Wildlife Crossings</th>
<th>Habitat</th>
<th>Architectural Resources</th>
<th>Archaeological Resources</th>
<th>Residences</th>
<th>Commercial/Industrial</th>
<th>Commercial Resources</th>
<th>Sensitive Uses</th>
<th>Hazardous Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Franklin Rd (Meridian Rd - Eagle Rd)</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>18</td>
<td>107</td>
<td>35</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kuna-Meridian Rd (Kuna-Mora - SH 69)</td>
<td>3</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Linder Rd</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Project</td>
<td>Wetlands</td>
<td>Stream/Canal/Crossings</td>
<td>Sensitive Plants</td>
<td>Sensitive Wildlife</td>
<td>Fisheries</td>
<td>Wildlife Crossings</td>
<td>Habitat</td>
<td>Architectural Resources</td>
<td>Archaeological Resources</td>
<td>Residences</td>
<td>Commercial Industrial</td>
<td>Commercial Resources</td>
<td>Commercial Uses</td>
<td>Sensitive Uses</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>----------</td>
<td>------------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Extension, overpass at I-84</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Locust Grove Rd: Overland Rd - Franklin Rd</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Locust Grove Rd Overpass over I-84</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Meridian Rd Interchange at I-84</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Meridian Rd: Franklin Rd - Cherry Ln</td>
<td>43</td>
<td></td>
<td>238</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Overland Rd: Locust Grove Rd - Eagle Rd (Inventory from Ten Ville to Eagle)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SH 16 (Emmett Highway) River Crossing</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ten Ville Interchange at I-84</td>
<td></td>
</tr>
</tbody>
</table>

Source: Science Applications International Corporation (SAIC)

Note: Counts indicate numbers of land parcels with potential or actual resources or issues.

Note that SAIC did not conduct the same noise analysis as did the earlier Ecological Design due to insufficient information on vehicle mixes and grades. Instead, SAIC conducted a windshield survey that included counts of potentially affected residences, schools, medical facilities, public institutions facing or backing onto project roads; commercial natural resources such as gravel or sand pits; and sensitive noise receptors such as residences, day care centers, or other public assembly areas.

As part of the land use survey, particular attention was given to noise sensitive receptors, including single-family residences. In order to facilitate future noise analysis, distances were measured from the centerline to the edge of the structure in increments of 100 feet. For project sites that involved building a new road, the windshield survey was reviewed through various side streets available. However, without specific road design, distance road measurements for the noise analysis were estimated.
Environmental Issues Policies

1. COMPASS will coordinate with the transportation implementing agencies to evaluate potential effects of projects on the natural and built environment. As projects move into implementation—generally with preliminary design and engineering—the transportation agency with responsibility for the project will oversee any environmental reviews.

2. COMPASS will consider funding an environmental inventory and mapping program for use in transportation planning and design. The inventory/mapping system would be part of the established geographic information system now operated by many local governments. Such a program could be considered for funding under the Enhancement funding category of TEA-21.

3. COMPASS will consider funding a historic inventory and mapping system, also to be compatible with the geographic information system. Such a program could be considered for funding under the Enhancement funding category of TEA-21.

4. COMPASS will work with local governments to preserve historic resources identified in local historic resource inventories from adverse impacts of road construction, especially within arterial corridors.

5. COMPASS will work with local governments and transportation agencies to prepare guidelines for residential, commercial, and other uses along arterials, limited access highways, and freeways. These guidelines should address noise attenuation through techniques such as earth berms, sound walls, and increased setbacks.

6. COMPASS will work with local governments to continue development of neighborhood boundary maps, which can be used by transportation agencies in planning and design of facilities and services.

7. COMPASS will offer assistance to implementing agencies in identifying and evaluating runoff issues during project implementation.

8. COMPASS will offer assistance in identifying and evaluating truck routes and regulatory policies.

9. COMPASS will assist in developing and supporting legislation on regional drainage districts.

10. COMPASS will assist in efforts to establish scenic road corridor status along State Highway 21 and State Highway 55.

11. COMPASS will seek funding to conduct a noise study along principal and minor arterial roadways to provide local governments with the technical basis and implementation options necessary to develop uniform land use policies and zoning and subdivision regulations to mitigate noise impacts.

12. COMPASS will support a Treasure Valley regional storm drainage master plan to quantify and qualify water quality issues and responsibilities.
Chapter 7:
Public Transportation
Introduction

Public transportation is an essential element of Ada County's overall transportation system. Alternatives ranging from vanpools and buses to Park & Ride and bicycle facilities offer convenient transportation alternatives to all citizens who need access to jobs, education, medical care, shopping and other activities.

Destination 2025 confirms the Ada Planning Association's (APA) commitment to public transportation countywide and in the Boise metropolitan area, while placing new emphasis on a regional system that connects Ada County with Canyon County – a combined area commonly called the Treasure Valley. While Ada County is recognized as the regional hub for employment and shopping opportunities, the Canyon County employment base has changed and grown over the years, generating increased bi-directional travel between the two counties.

This chapter identifies goals, service areas and funding options to help achieve the public transportation vision for both Ada and Canyon Counties and concludes with updated public transportation policies.

This chapter contains relevant information from the following documents:

- The Treasure Valley Alternative Transportation Analysis (1995)
- I-84 Study (2001)

All can be obtained from COMPASS.

The Vision Statement adopted originally by the APA Board in September 1995 and continued in this plan says:

"While the future transportation system will continue to orient mostly toward people traveling in automobiles, convenient transportation alternatives will be provided where practical which allow opportunities to travel to work, school, shopping, and other services within Ada County and in other parts of the Treasure Valley. The long-term, area wide goal for non single-occupancy vehicle alternatives is 25% of travel, although levels may vary within the County depending on land uses and service alternatives. Public policies should favor development and use of travel alternatives."

"Vanpools, carpooling, commuter buses, park & rides, high occupancy vehicle lanes, telecommuting, bicycle and pedestrian facilities, and other alternatives will be considered. Whenever practical, such alternatives will be offered or coordinated through the private sector to improve efficiency and lower costs."

Issues Addressed in This Chapter

Mobility between Ada and Canyon Counties is essential to the economic welfare and future livability of the region. Accessibility to the transportation network by all users is also a critical component of the system. To create a comprehensive regional system alternative public transportation needs to be addressed at three levels: intercounty, countywide and the Boise metropolitan area. To reduce the demand on the transportation system in the community, policies need to be geared toward attaining 25 percent of travel within the region by alternative transportation during the peak hour as well as throughout the day.
Regional Transportation Planning Area

The regional transportation area for Destination 2025 includes Ada County and its six cities: Boise, Eagle, Garden City, Kuna, Meridian and Star, as well as intercity connections between Ada County and the cities of Caldwell, Middleton and Nampa in Canyon County. Various agencies and government entities are involved with alternative transportation programs in the Treasure Valley.

The Ada County Highway District builds and maintains all non-state roadways in the county, and coordinates several alternative transportation programs such as vanpools and incentive programs. ValleyRide coordinates public transportation services, including Boise Urban Stages (BUS), which serves Boise and Garden City.

The Boise urbanized area population exceeded 200,000 with the 2000 Census and expanded to include Garden City, Meridian, and Eagle. The shift from small urban to medium urban status will have a significant effect. The Nampa/Caldwell area was also designated an urbanized area over 50,000 in population, making services in that area eligible for transit funding under the Federal Transit Administration.

ValleyRide, the Treasure Valley's regional transportation authority will become the eligible recipient for federal transit funds in October 2002. Most communities outside Boise and Garden City are not currently served by fixed-route transit systems. The need in these areas is discussed later in this chapter.
Public Transportation Programs and Planning Efforts

Acknowledging the growing interdependence of their communities, Treasure Valley leaders began efforts several years ago to jointly plan public transportation options. Following are descriptions of public transportation programs and planning efforts underway in the Treasure Valley.

Regional Public Transportation Authority

In 1994, the Idaho Legislature approved legislation establishing conditions for forming a Regional Public Transportation Authority (Title 40, Chapter 21). The law required approval by a simple majority of voters within a particular region and appointment of a board by local governments to oversee the agency. In November 1998, more than 70 percent of the voters of Canyon and Ada Counties approved creation of two agencies to coordinate and improve public transportation in the Treasure Valley. The two regional authorities then merged into one organization to identify the travel demand, develop transit services and identify transit funding. The new authority, which recently approved the name ValleyRide, went through a prolonged organizational effort during its first two years. An executive director was hired in late 2000. Boise City and ValleyRide have negotiated an agreement for ValleyRide to operate Boise Urban Stages, and provide for the transfer of all Boise City transit assets and the grant applicant status to ValleyRide.

The members of ValleyRide include:
- The fourteen cities in Ada and Canyon Counties
- Both Ada and Canyon Counties
- Ada and Canyon County Highway Districts
- Capital City Development Corporation
- Boise State University

The member agencies appoint board members to represent their interests. Among the existing and proposed services that fall under the jurisdiction of ValleyRide are:
- Fixed-route buses that run on designated streets and schedules.
- On-demand services that provide special transportation for persons with disabilities or seniors.
- Taxi subsidy programs for citizens meeting qualifications.
- Vanpool and carpool services oriented to commuters.
- Park & Ride lots.
- Private transportation services that receive public funds.

For more information, visit the ValleyRide web site at www.valleyride.org.

In 2001, ValleyRide commissioned a plan to guide public transportation in its region. A consultant, Weslin Associates, prepared the plan after participating in a series of public meetings held across the area in Summer 2001. The plan, titled "Transit Development Plan: Service Alternatives Technical Memorandum" (December 2001) presented a package of services designed to meet ridership goals established in Destination 2020 and in the I-84 Study. More information is presented later in this chapter.
Treasure Valley Alternative Transportation Analysis

Needs for public transportation within Ada and Canyon Counties were identified to some extent in the Treasure Valley Alternative Transportation Analysis (TVATA). Consultants prepared the analysis for the Ada Planning Association in 1995. It evaluated transportation choices for intercounty travel between Ada and Canyon Counties, as well as other key travel corridors and to develop an action plan for future direction. The major recommendations of TVATA were to:

- Modestly expand the existing transit system by targeting unserved areas, linking key origins and destinations, increasing frequencies, providing more connections between communities, expanding the carpool and vanpool programs, and offering incentives to encourage carpooling, vanpooling and transit use.
- Protect the Union Pacific Railroad right-of-way for future transit uses, including long-term fixed guideways such as busways or rail.
- Develop transit building blocks over time by adding needed services and improvements over time as regional transit opportunities evolve in the two counties.
- Create a regional transportation authority (RTA), which would serve as a focal point for community contact, would coordinate services, and would identify funding sources.
- Develop an assessment of regional transit costs.

I-84 Study

COMPASS and the Idaho Transportation Department commissioned a study of the I-84 corridor starting in calendar year 2000. The Study examined the transportation system needs for the I-84 Corridor from the Wye Interchange east of Boise (east terminus) to State Highway 44 (west terminus) west of Caldwell. Among other activities, the I-84 Study evaluated the potential of transportation alternatives to reduce demand and possibly reduce the need to widen roadways. Travel demand management (TDM) strategies are aimed at reducing travel demand by influencing people’s travel behavior through one of the following methods:

- Passive measures that include incentives designed to promote transit and rideshare as alternatives to the use of single-occupant vehicles (SOVs).
- Economic measures that create disincentives to driving alone such as roadway user or parking fees or subsidies for programs to encourage the use of other modes.
- Administrative mechanisms designed to coordinate TDM efforts.

The results of the study are described below.

Funding Issues

As discussed above, long-range regional public transportation programs will require significant funding to connect urban areas in the Treasure Valley. The Treasure Valley Alternative Transportation Analysis (TVATA) pointed out that funding a high quality system is one of the biggest challenges for the Treasure Valley communities, particularly in the area of transit operational costs.

Local Funds

Local governments contribute funding to public transportation, including:

- City of Boise. Provides funding to Boise Urban Stages, taxi scrip, and senior transportation.
- Garden City. Provides funding to Garden City Interline.
- Ada County Highway District. Provides funding and in-kind support to Commuteride.
- City of Meridian. Provides funding to Treasure Valley Metro.
• Ada County. Provides funding to taxi scrip and senior transportation. More information can be found below under “Services in Ada County.”

Federal

The U.S. government has provided funding to support public transportation since the early 1960’s. The current legislation, the Transportation Equity Act for the 21st Century (TEA-21), sets up several categories of funding managed by the Federal Transit Administration (FTA):

• Section 5307. FTA formula grants to public transit systems in all urban areas. Funds authorized through Section 5307 are awarded to states to provide capital and operating assistance to transit systems in urban areas with populations between 50,000 and 200,000. Transit systems in urban areas with populations greater than 200,000 receive their funds directly from FTA. Since funds are earmarked for an area based on a formula—population, density, transit service factors, etc.—there is predictability in the amount of funding.

• Section 5309. FTA discretionary grants to public transit agencies for capital projects such as buses, bus facilities and rail projects. Since a transit agency must compete technically and politically for funds, the amount of funding is not predictable.

• Section 5310. FTA formula capital grants to states for transportation programs that serve the elderly and people with disabilities. States distribute Section 5310 funds to local operators in both rural and urban settings, who are either nonprofit organizations or the lead agencies in coordinated transportation programs. The funding to the State is based on a formula, but Idaho awards funds to providers in a competitive process.

• Section 5311. FTA formula capital and operating grants to public transit systems in areas with populations of less than 50,000. The funds are routed through the State of Idaho, which targets a proportion of the funds to each of the six districts in the State.

• Jobs Access/Reverse Commute. FTA grants to assist states and localities in developing new or expanded transportation services that connect welfare recipients and other low-income persons to jobs and other employment related services.

In addition to these sources, there are several other types of funds:

• Congestion Mitigation/Air Quality (CMAQ). A flexible funding program administered by the Federal Highway Administration (FHWA) that funds projects and programs to reduce harmful vehicle emissions and improve traffic conditions. CMAQ funds may be used for transit projects, rideshare projects, high-occupancy vehicle lanes, or other purposes.

• Surface Transportation Program. Flexible funds awarded to the State of Idaho. Road construction and major maintenance, transit capital projects, vehicle purchases, park-and-ride construction, and bikeway construction are eligible under STP. Transit operations costs are non-

There are limitations and conditions imposed by any federal grant. Local match is usually required, with rates varying from 50 percent to 93 percent. Occasionally, local match is reduced or eliminated for high-priority projects such as implementing measures for persons with disabilities. Using federal grants also requires adherence to a large number of federal rules, many of which increase the cost of service or equipment.

Generally, the major constraint of many federal grants is that few are available to fund operations costs on an on-going basis. Operations costs include fuel, drivers’ wages, etc. Given that 70 percent or more of public transportation costs in smaller metropolitan areas are operational costs, reliance on federal funding to pay such costs is unrealistic. In fact, federal operating assistance accounted for less than 2 percent of the total operating cost revenues in 1999. (National Transit Database (NTD). 1999. www.ntdprogram.com). As is shown in Table 21, transit and flexible funds available for transit use are relatively small in comparison to the needs discussed later in this chapter. The greatest potential lies in seeking discretionary funding for capital needs under Section 5339.
Table 21: 2001 Federal Funding

<table>
<thead>
<tr>
<th>Funding Sources</th>
<th>National</th>
<th>Idaho</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Transit Administration Funding (dollars shown in millions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 5307</td>
<td>$2,926.20</td>
<td>$3.00</td>
<td>$1.80</td>
</tr>
<tr>
<td>Section 5310</td>
<td>$77.60</td>
<td>$0.44</td>
<td>$0.15</td>
</tr>
<tr>
<td>Section 5311</td>
<td>$205.50</td>
<td>$1.70</td>
<td>$0.49</td>
</tr>
<tr>
<td>Section 5303 (Bus)</td>
<td>$574.10</td>
<td>$3.47</td>
<td>n.a.</td>
</tr>
<tr>
<td>Section 5303 (New Start Fixed-Guideways)</td>
<td>$1,079.10</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Job Access/Reverse Commute</td>
<td>$99.80</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>FTA Funding Total</td>
<td>$4,982.30</td>
<td>$8.60</td>
<td>$2.43</td>
</tr>
<tr>
<td>Federal Highway Administration Flexible Funding (dollars shown in millions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Transportation Program</td>
<td>$5,535.19</td>
<td>$34.09</td>
<td>$2.65</td>
</tr>
<tr>
<td>Congestion Mitigation/Air Quality</td>
<td>$1,350.50</td>
<td>$3.96</td>
<td>$1.40</td>
</tr>
<tr>
<td>Flexible Funding Total</td>
<td>$6,885.69</td>
<td>$38.05</td>
<td>$4.04</td>
</tr>
<tr>
<td>Total Federal "Transit Eligible" Funding</td>
<td>$11,847.99</td>
<td>$46.65</td>
<td>$6.47</td>
</tr>
</tbody>
</table>

Sources:
National transit funding is taken from the Federal Register, January 18, 2001.
National highway funding was obtained at a Federal Highway Administration web site at http://www.fhwa.dot.gov/es21/funding.htm.
Idaho and regional funding is based on the Statewide Transportation Improvement Program. Idaho Transportation Department. September 2000.
Regional funds are funds programmed for expenditure in Ada and Canyon Counties during 2001. No implication is made that these funds would be made available for public transportation.

The TVATA and the Transit Development Plan identified several potential sources for transit funding, particularly for operations costs, many of which would require state legislation and/or local ordinances. Since projected costs would exceed the ability of local governments to support with property taxes, other dedicated funding sources would be needed to greatly increase and improve public transportation services.

Other Potential Sources-National Examples

If only 2 percent of operating costs are covered by federal funds for transit systems in the U.S., what is the source for the other funding? Often, citizens think that fares paid by the transit riders cover most costs of public transportation. However, Figure 33 shows that fares in smaller systems across the U.S. covered only 21.5 percent of the costs, while state and local assistance provided over half the cost. (1999 NTD) Only in the larger systems, serving 1 million or more people, did fares equal the amount contributed by state and local governments. For Boise Urban Stages, the percentage of costs covered by fares was 15 percent in 2000. (2000 NTD)
While public transportation is subsidized, the assumption that automobile costs are paid for totally by users may not be true. While the size of the auto subsidy is hotly debated, certain hidden costs are not paid directly by drivers or are not paid in proportion to the drivers' impacts:

- "Free" parking provided by employers, services, and stores. (A surface lot parking space may cost $1,500 or more for land and construction. A 1 million square foot shopping center may have 5,000 spaces or more. Parking garages average about $7,000 per space. (International Parking Institute, http://www.parking.org/main/faq.htm) Costs per space escalate rapidly in urban areas where land values are much higher.)
- Maintenance and other costs covered by property taxes or general revenues of the local government.
- Environmental and health costs attributable to pollution or waste disposal. (What happens to the millions of tires discarded each year?)
- Excess capacity needed to handle traffic during 2-4 hours per day.

Many sources on the Internet discuss both transit and auto subsidies at great length.

Generally, these contributions come from taxes levied directly by either transit agencies or tax dollars contributed by local governments to transit. Table 22 shows a breakdown of how state and local governments obtained the funds. The combined contribution amounted to $10.7 billion in 1999.
Table 22: National Sources of State and Local Funds for Public Transportation

<table>
<thead>
<tr>
<th>Tax sources</th>
<th>Percent of State and Local Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General revenues of the government entity</td>
<td>33.4%</td>
</tr>
<tr>
<td>Dedicated taxes and fees</td>
<td></td>
</tr>
<tr>
<td>Income taxes</td>
<td>1.8%</td>
</tr>
<tr>
<td>Sales taxes</td>
<td>31.7%</td>
</tr>
<tr>
<td>Property taxes</td>
<td>5.3%</td>
</tr>
<tr>
<td>Gasoline taxes</td>
<td>4.2%</td>
</tr>
<tr>
<td>Other taxes</td>
<td>10.0%</td>
</tr>
<tr>
<td>Bridge, tunnel and highway tolls</td>
<td>2.4%</td>
</tr>
<tr>
<td>Other dedicated taxes</td>
<td>3.0%</td>
</tr>
<tr>
<td>Other funds</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

Dedicated sales taxes nearly equal funds from general revenue accounts. General revenues are funds that can be used by state or local governments for any purpose: schools, police, parks, and other public services. Dedicated taxes and fees are legally constricted for use in a particular function. The most common dedicated funding source in the U.S. for transit is the sales tax, but other areas in the country have used dedicated property taxes, income taxes, gas taxes, vehicle excise taxes, and payroll taxes. Payroll taxes are used in Portland and Eugene, Oregon. Payroll taxes are similar to income taxes but are levied on the employer. For example, an employer with a payroll of $1 million would pay $6,000 under a dedicated 0.6 percent payroll tax. In Eugene, this system helps fund a transit system with an operating budget of $20 million (2001) for a service area population of approximately 260,000. In comparison, the service area for ValleyRide was 442,000 (2000 Census).

In Idaho, no dedicated funding source has been authorized for public transportation. Highways and streets are funded in part by a dedicated fund called the "Highway Distribution Account" (HDA). State-levied fuel taxes, registration fees, tire taxes, and other taxes and fees go into the HDA, which under Idaho constitution is restricted for the purpose of building and maintaining roads. In 2001, $325 million was distributed to eligible users under HDA. Of that amount, $119 million was distributed to local governments for local road construction and maintenance. During that same year, approximately $200,000 in State funds was provided by the State of Idaho for public transportation. (For an excellent summary of highway funding, visit the Idaho Transportation Department web site at http://www2.state.id.us/itd/overfund.htm.)

Currently, Idaho law does not permit local tax options for any purpose with limited exceptions for resort communities that meet very restricted conditions.

Americans with Disabilities Act of 1990

Passed by the Congress in 1990, the Americans with Disabilities Act of 1990 mandates equal opportunities for persons with disabilities in the areas of employment, transportation, communications and public accommodations. Under this Act, often referred to as the ADA, most transportation providers are obliged to purchase lift-equipped vehicles for their fixed-route services, and must assure system-wide accessibility of their demand-responsive services to persons with disabilities. Public transit providers also must supplement their fixed-route services with paratransit services for those persons unable to use fixed-route service because of their disability. The services discussed in this chapter are subject to provisions of the ADA.
Services in Ada County

This section provides an overview of existing alternative public transportation services in Ada County and three of its municipalities outside the Boise Metropolitan Area.

Boise Urban Stages

The City of Boise began providing public transportation services shortly in April 1973 after a private provider dropped its bus service due to financial losses.

ValleyRide operates the bus system, called Boise Urban Stages, under an agreement between ValleyRide and the City of Boise. Since its inception, Boise Urban Stages has always been a contracted service, managed by private transit companies under contract with Boise. Both fixed-route and paratransit (demand-responsive) services for persons with disabilities are operated by Boise Urban Stages, covering an area of 64.5 square miles.

Boise Urban Stages serves a current Boise City population of approximately 193,100, with the population for Ada County being 323,200 (2002 estimates prepared by COMPASS). The most recent forecast is for Ada County to have a population of 492,000 by the year 2025 – an increase of more than 50 percent.

Boise Urban Stages is funded by transit fares, city general revenues from property and sales taxes, Federal Transit Administration funds and miscellaneous sources. Table 23 shows sources of Boise Urban Stages revenues from 1991 through 2001. Not only does the City of Boise need to identify funding sources to expand Boise Urban Stages, but also sources need to be found to keep service at the current level, as federal funds for operating costs will be eliminated starting in 2003.

Table 23: Boise Urban Stages Revenues

<table>
<thead>
<tr>
<th>Year</th>
<th>Federal</th>
<th>Local</th>
<th>Farebox</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>$851,785</td>
<td>$811,593</td>
<td>$239,500</td>
<td>$86,555</td>
<td>$1,989,433.00</td>
</tr>
<tr>
<td>1995</td>
<td>$571,193</td>
<td>$1,585,978</td>
<td>$500,609</td>
<td>$233,792</td>
<td>$2,991,572.00</td>
</tr>
<tr>
<td>2000</td>
<td>$1,745,973</td>
<td>$1,878,969</td>
<td>$664,052</td>
<td>$122,122</td>
<td>$4,411,126.00</td>
</tr>
<tr>
<td>2001</td>
<td>$2,154,485</td>
<td>$1,890,896</td>
<td>$626,456</td>
<td>$184,700</td>
<td>$4,856,547.00</td>
</tr>
</tbody>
</table>

Note: Revenues do not include those for capital acquisitions.
Source: Boise City Finance and Annual Reports filed with the Federal Transit Administration.

Boise Urban Services provides the following services, which are described below.

ACCESS Service

This demand-responsive fleet of transit vans is operated for persons with disabilities who are unable to ride the fixed-route system. ACCESS operates six vans Monday through Friday from 5:15 a.m. to 7:40 p.m. and from 7:45 a.m. to 6:10 p.m. on Saturday. Ridership on ACCESS has increased during recent years. During 2001, ACCESS provided 27,526 passenger trips, up 9 percent from 2000.

The number of trips provided by ACCESS will continue to increase as Boise Urban Stages meets the requirements outlined by the Federal Transit Administration and the Americans with Disabilities Act.

Boise Urban Stages will purchase eight replacement vehicles for ACCESS in 2002.
Fixed-Route Service

Boise Urban Stages currently operates 19 regular fixed-routes Monday through Friday that link residential areas with major work sites, downtown Boise, hospitals, shopping centers and the Boise Towne Square Mall. The primary focus of fixed-route service is downtown Boise, with 14 routes connecting the central business district with points throughout the city.

Both Boise State University and Boise Towne Square Mall serve as minor hubs, with three routes serving the University directly and four routes providing service to the mall and the surrounding area.

The Monday through Friday, routes operate on a 30-minute frequency during peak hours (5:15 a.m. to 8:45 a.m. and 2:45 p.m. to 7:40 p.m.) and a 60-minute frequency during mid-day service hours (8:45 a.m. to 2:45 p.m.). The regular weekday service hours are from 5:15 a.m. to 7:40 p.m., a total of 14.5 hours per weekday.

Seven routes operate on Saturday at 45-minute frequencies from 7:45 a.m. to 6:15 p.m. Except for one route, all Saturday routes run differently from those operated on weekdays. Boise State University and the Boise School District have contracts with Boise Urban Stages for their students (college and high school only), employees and faculty members to ride free on Boise Urban Stages with a picture identification card. Cash fares have not increased since August 1992 when they were raised from 50¢ to 75¢ for adults. This same year fee for a youth, ages 6 to 18, was established. Table 24 shows the fare structures from 1975 through 2001.

Table 24: Boise Urban Stages Transit Fare Structure

<table>
<thead>
<tr>
<th>Year</th>
<th>Adult (Cash $)</th>
<th>E & H (Cash $)</th>
<th>Youth (Cash $)</th>
<th>Children Under 6</th>
<th>Youth (Pass $)</th>
<th>Adult (Pass $)</th>
<th>E & H (Pass $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$0.25</td>
<td>$0.10</td>
<td>$0.25</td>
<td>Free</td>
<td>N/A</td>
<td>$8.75</td>
<td>N/A</td>
</tr>
<tr>
<td>1980</td>
<td>$0.25</td>
<td>$0.10</td>
<td>$0.25</td>
<td>Free</td>
<td>N/A</td>
<td>$8.75</td>
<td>N/A</td>
</tr>
<tr>
<td>1985</td>
<td>$0.55</td>
<td>$0.25</td>
<td>$0.35</td>
<td>Free</td>
<td>N/A</td>
<td>$16.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>1991</td>
<td>$0.50</td>
<td>$0.25</td>
<td>$0.35</td>
<td>Free</td>
<td>N/A</td>
<td>$16.00</td>
<td>$10.00</td>
</tr>
<tr>
<td>1995</td>
<td>$0.75</td>
<td>$0.35</td>
<td>$0.50</td>
<td>Free</td>
<td>$18.00</td>
<td>$27.00</td>
<td>$13.50</td>
</tr>
<tr>
<td>2001</td>
<td>$0.75</td>
<td>$0.35</td>
<td>$0.50</td>
<td>Free</td>
<td>$18.00</td>
<td>$27.00</td>
<td>$13.50</td>
</tr>
</tbody>
</table>
Figure 34 below shows ridership levels from 1990-2001. The system carried a peak of 1.32 million trips in 1995, decreasing to 1.1 million in 2000. Ridership is generally related to the amount of service provided, as is shown in the chart. Reliability of service is also a key factor in ridership, and on-time performance declined in 2000, leading to a loss of riders. Service adjustments in 2001 to restore reliability helped to reverse the decline, even with a cut in service hours.

![Boise Urban Stages Graph](image)

Boise Urban Stages

Figure 34: Boise Urban Stages Ridership Levels

Boise Urban Stages has a fixed-route fleet of 36 buses, 22 of which are powered by compressed natural gas. Two of the other 14 buses were replaced in 1996 with small vans that operate on the Boise State University campus. The other 12 are beyond their useful life and scheduled for replacement by 2002. These buses will be funded in part by federal Congestion Mitigation/Air Quality funds. Due to the increase in fleet size in recent years, on June 1, 1998, Boise Urban Stages moved into a new facility located at 4755 South Orchard Road.

Garden City Interline

Since the mid-1990s, Garden City has funded a free fixed-route transit system. Operating along Chinden Boulevard and vicinity, the Interline service serves an area from Garrett to downtown Boise. The system carried 31,000 riders in 2001 at a total cost of $78,000. The City of Garden City covers the cost of the Interline out of its general revenues.

Commuteride Program

The Ada County Highway District operates a carpool and vanpool-matching program, called Commuteride, and sponsors a number of small Park and Ride lots in the Treasure Valley.

The 2001 program budget was $1.7 million. Approximately 25 percent is generated from vanpool user fees and employer contributions. The rest of the funding comes from federal and local Ada County Highway District matching funds. Funding for the carpool and vanpool program has increased as demand for alternative transportation increased over the years.

Fares are established to recoup all operational costs except insurance. In 2001, approximately 41 percent of Commuteride program funds were dedicated to the purchase, operation and maintenance of vans. Ada County Highway District owns 35 vans with 30 routes, four backup
vehicles and one van equipped to accommodate persons with disabilities. Ridership varies from 300 to 380 riders per month with fluctuations due to weather, gasoline prices and commuter delays due to construction.

Vanpool service covers Ada, Canyon, Elmore, and Gem counties. While most vans come from outlying cities to work sites in the Boise area, 12 vans serve commuters working in the Mountain Home Air Force Base area. Boise to Nampa is another reverse commute situation being considered. Most growth of the Commuteride program appears to be in the Canyon County, Mountain Home and Emmett areas with increase interest in “reverse commuting” from the Boise area to these outlying areas.

Administrative costs are covered by Surface Transportation Program-Urban funds. Vanpools depend on a stable group of riders (a minimum of 11 riders and one driver). Riders are sensitive to both price and convenience, so a change in the price or convenience can encourage or discourage riders.

Commuteride’s vanpool program has been very successful in providing transportation options to commuters.

A summary of the program’s success for fiscal year 2001 is as follows:

- Total routes in operation as of September 30, 2001: 30
- Total boardings: 104,860
- Total route miles traveled: 490,455
- Total vehicle miles saved: 4,440,700
- Gallons of gasoline saved: 306,500
- Reduction of carbon monoxide pollutants (lbs): 201,800
- Total commuter costs saved: $1,532,000 (Based on the IRS rate of 34.5 cents per mile)

In fiscal year 2002-2004, federal funds are committed to purchase five new vans, with an additional five vans purchased each year thereafter. Because the fleet is growing rapidly, staff is exploring other operation and maintenance options to improve efficiency. If this proves successful, other vans may be operated similarly.

Carpool/Guaranteed Ride Home Programs

The ACHD’s carpool program matches approximately 1,100 clients from the previously mentioned areas. Carpooler/vanpoolers may sign up for the guaranteed ride home program, which offers free rides to carpool/vanpool participants in special circumstances during the workday.

More employers are developing employee programs to encourage use of alternative transportation instead of a single-occupant vehicle. Some provide vanpool or transit subsidies, preferential carpool parking spaces, flextime and various other incentives. The partnership between Commuteride and area employers has demonstrated the desire of public agencies and businesses to reduce the demand on the transportation system in the community.

This partnership between Commuteride and area employers should be explored further in the future. As federal and local funds decrease over time, alternative funding sources need to be expanded.

The vanpool and carpool programs are very successful in reducing the number of vehicles on the roadway and provide various benefits to the region. Regional jurisdictions need to actively support the Commuteride program, giving it strong political support and working to assure adequate and consistent funding.

Park and Ride Facilities

Park and Ride facilities provide central collection points where individuals can park their vehicle or be dropped off, park their bike, or conveniently walk to and transfer to a carpool, vanpool, or
bus to reach their destination. These facilities can be designated formal sites on public property or as joint-use facilities on private property, including churches or retail shopping centers. By providing a convenient meeting location for commuters in Ada County and outlying communities, more commuters will be encouraged to carpool, vanpool or use the bus where available.

The size of the Park & Ride facility may vary from a few parking spaces in less traveled corridors or lightly populated areas to hundreds of parking spaces in high demand corridors of densely populated areas.

The Ada County Highway District has identified 12 existing Park & Ride facilities throughout Ada County: eight in Boise, three in Meridian and one in Kuna (see Figure 7-3). Ten of these lots are joint-use facilities. Another 12 lots are located in the Caldwell, Nampa, Emmett, Middleton, Mountain Home, and on I-84 at Exit 13 in Payette County. Most are donated by local businesses and churches. Two Park & Ride lots were recently constructed in Meridian: one at Eagle Road/Overland and the other at Meridian Road (SH 69)/Overland. These lots are for Park & Ride only. ACHD Commuteride and ValleyRide are identifying additional facilities and opportunities. Locations can include remnant parcels of right-of-way near freeway interchanges or major roadways near large commercial or residential areas or a major shopping center with abundant parking spaces that are only needed during peak shopping periods. Possible sites may be in existing parks or other public locations such as fairgrounds. Small lots could also be incorporated into the site design for large residential and commercial developments.

Peripheral lots are found on the edge of downtown Boise or near other major activity centers such as the Boise airport, Boise State University, and the Boise Towne Square Mall.

Potential sites for interceptor lots are identified at freeway interchanges near metropolitan boundaries and on state highways, including a site at I-84 between Cole Road and Broadway Avenue. Other sites along the principal commuting routes have not yet been identified. Developing a comprehensive Park & Ride system will provide numerous community benefits, including reductions in traffic congestion, parking demand at downtown Boise work sites, energy consumption, and air pollution.

The I-84 Study presented recommendations discussed below concerning expansion of the Commuteride program. These improvements would cost $46 million over the next 20 years—averaging $2.3 million per year. Most of this cost would be in addition to the current level of expense.

Commuters Bus, Inc.

A privately owned commuter bus service, Commuters Bus, Inc., began daily operation between the Caldwell/Nampa areas and Boise in October 1995. Service is provided to downtown Boise, ParkCenter area and Boise State University. The company added a route in May 1999 that serves Caldwell, Middleton, Star and Eagle to Boise. The service received $100,000 in Federal Transit Administration funds under Section 5311, with the balance of costs covered by user fees. Approximately 14,000 rides were provided in 2001.

Treasure Valley Metro

Treasure Valley Metro is a service started in June 2001 to address congestion related to the reconstruction of the I-84/I-184 interchange, known locally as the "Flying Wye." ACHD Commuteride manages this service, which is provided under a contract with ACHD by Treasure Valley Transit. In April 2002, Treasure Valley Metro carried nearly 2,700 riders between Nampa, Meridian, and Boise. Of the total ridership, most (2,350) rode the peak hour commuter service.

Peak-hour morning service consists of five trips from Nampa into downtown Boise, and five trips to serve "reverse" commuters from Boise to Meridian and Nampa. The afternoon peak service consists of five trips from downtown Boise to Meridian and Nampa, with five trips serving the reverse commute from Nampa and Meridian into Boise.
There is also a mid-day service that operates five trips on an hourly interval from 9:44 AM to 3:15 PM. Two routes operate—one between Nampa and Meridian and another between Meridian and Boise—with passengers able to transfer at the Meridian stop.

The annual commuter service costs $249,000 or $20,750 per month. The cost per passenger trip is approximately $8.80, of which the passengers pay $1.25. A mix of sources funds the balance:

- Congestion Mitigation and Air Quality funds
- Surface Transportation Program funds
- City of Meridian

Funding will be needed to continue service after mid-2003, since the federal funds that have covered a substantial part of the operating costs will not be available. More information on Treasure Valley Metro and other area transit services can be found at www.tellmewye.com.

Taxicabs

Over 20 taxi companies serve Boise. Some provide service to communities outside Boise. Fares consist of a base charge plus additional charges for mileage or waiting time. While taxi companies are interested in creating hubs in these outlying areas, costs were still prohibitive for routine transportation needs.

Scrip Taxi Service

Two programs, Boise Scrip and Rural Scrip (both operated by Senior Solutions), provide discount taxi service for persons 15 years or older with physical or mental disabilities that prevent them from driving or using regular transit. Boise Scrip is funded through Boise City ($7,200 a month during fiscal year 1998). Rural Scrip receives federal support through Ada County, limited to available funding. In 2001, the cost of both services was $175,000. Studies of scrip use in the early stages of the program revealed that most trips are either not routine (e.g., regular trips to work or medical appointments) or are made when public transportation services are not available. As the community grows and the needs increase, more funding will be needed to continue this program.

Senior Center Vans

Senior Centers in Boise, Eagle, Garden City, Kuna, Meridian and Star each operate a van for seniors (55 and older) in their respective communities. The vans primarily provide transportation to and from the Senior Centers for meals. The Eagle Senior Center also provides transportation once a week to Boise, Meridian or Nampa. The Meridian center provides weekly trips to doctor’s appointments, entertainment in Boise or shopping activities in Nampa. Many of the existing vans do not have lifts and will eventually need to be replaced.
Public Transportation Needs

Ada County residents outside Boise and Garden City lack local fixed-route services and paratransit services, but they have access to the Commuteride program or other regional services. Public transportation in these areas can be added, with the level of service dependent on demand. Within areas now served by public transportation, service frequency and coverage deters many residents from using public transportation. Surveys done over the past 10-15 years indicate constant themes among transit riders and persons who might use transit:

- More frequent service, especially during commute hours.
- Better geographic coverage to decrease the walk distance and increase access to more homes and destinations.
- Expanded hours of service, so people can get to and from work, school, or other destinations earlier in the morning and later in the evening.
- Faster travel on transit, so the travel times come closer to the travel times of using a personal vehicle.

Population, employment, residential density and household characteristics will help determine the direction public transportation services will take in the future. The availability of funds will also be a major factor in expanding and improving services. The three major studies referenced earlier in this section addressed some issues and policies.

Treasure Valley Transportation Analysis

The Treasure Valley Alternative Transportation Analysis recommended the following general transit goals:

- Develop two basic service types for the area: connecting service between communities and general-purpose local transit (vehicles operating on a schedule and a designated route) within the larger communities.
- The first goal can be met by providing peak-hour express bus services on key corridors between major attractions in Caldwell, Nampa, Meridian, Eagle and Boise. Smaller vehicles and emphasis on vans and feeder services should be considered for smaller communities. To meet the latter goal, improve the existing Boise Urban Stages system as usage and demand develops. Start local service in Caldwell, Nampa and Meridian.
- Identify and preserve rights-of-way for future high-capacity transit options. This could include rail, busway, other transit services, and other public uses such as utilities. The corridor of highest concern is the Union Pacific Railroad track between Nampa, Meridian, and Boise.
- Consider the need for a dedicated funding source for transit. Other areas – Portland, Denver, Spokane, Reno, and Salt Lake – have such funding.
- Develop a transit service plan for intercommunity service with routes, stations, and park-and-ride lots that can be part of the commitment to a dedicated right-of-way service.
- Support alternative transportation through appropriate land use designs, employer programs, and managed parking on both publicly owned lots and requirements for parking in future developments. Only with such supportive policies and funding can the share of alternatives be increased.
- Make commitments to improved alternative transportation services and land use/parking policies before making decisions on higher-capacity transit technologies, such as rail, or other fixed-guideway systems. Fixed-guideway systems are those in which the vehicles are confined to rails or other devices. Their ability to move more passengers per hour than buses comes at a cost of inflexible routes and very high capital investments. Buses and vans, which operate on the street system, provide greater flexibility, especially in lower density
communities. Communities with successful fixed-guideway services are always accompanied by a high level of bus and van services which act as “feeders.”

Transit Development Plan

As noted above, ValleyRide commissioned a plan to guide public transportation in its region. The *Transit Development Plan: Service Alternatives Technical Memorandum* (December 2001) presented a package of services designed to meet ridership goals established in *Destination 2020* and in the I-84 Study. The plan started with the goal approved by COMPASS in 1995 targeting 25 percent of trips to be served by alternative transportation, including buses, carpools, walking, biking, and telecommuting. A specific goal of 5 percent for transit was set in the I-84 Corridor Study, described above. The plan concluded that 5 percent was reasonable, comparing the area with others across the U.S. that have achieved that goal or exceeded it.

To achieve the goal would require a significant investment in services. Using information from *Destination 2020* on projected future trips, the plan estimated daily ridership would need to be 73,000 trips by 2020 to meet the 5 percent goal. The concept in the plan envisions a “core” urban service area surrounded by rural areas (see Figure 35). In the urban service area, service coverage and frequency would be higher, with a range of services, including:

- **Primary and secondary routes.** Fixed-routes with larger buses (30 to 40-foot transit coaches).
- **Premium routes.** Main trunk routes, notably along the I-84/Union Pacific Rail line corridors, serving major activity centers.
- **Special.** Custom operations including demand-responsive services for persons with disabilities.
- **Express routes.** Commuter-oriented peak hour services similar to those provided by Commuters Bus and Treasure Valley Metro. (See below for more information.)

![Figure 35: Urban and Rural Service Areas](image-url)
Rural areas would be served by a different package considered more suitable to the lower population and densities. Smaller vehicles would be used, and most routes would connect to "transit centers" located at the periphery of the urban service area. These centers would allow rural residents easy access to the urban transit services.

The plan presented four levels of service with operating and capital costs as summarized in Table 25 and Table 26.

Table 25: ValleyRide TDP Annual Operating Costs in the Year 2020 by Alternative

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Annual Operating Costs*</th>
<th>Funding Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Fares</td>
</tr>
<tr>
<td>Minimum</td>
<td>$16,440</td>
<td>$3,288</td>
</tr>
<tr>
<td>Moderate</td>
<td>$26,269</td>
<td>$6,567</td>
</tr>
<tr>
<td>Maximum</td>
<td>$51,494</td>
<td>$15,448</td>
</tr>
<tr>
<td>Maximum with Rail</td>
<td>$61,251</td>
<td>$21,438</td>
</tr>
</tbody>
</table>

* Costs are in thousands and in 2001 dollars.

Table 26: ValleyRide TDP Annual Capital Costs by Alternative

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Annual Capital Costs*</th>
<th>Funding Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fleet</td>
<td>Facilities</td>
</tr>
<tr>
<td>Minimum</td>
<td>$3,151</td>
<td>$14,756</td>
</tr>
<tr>
<td>Moderate</td>
<td>$4,951</td>
<td>$21,319</td>
</tr>
<tr>
<td>Maximum</td>
<td>$6,623</td>
<td>$25,756</td>
</tr>
<tr>
<td>Maximum with Rail</td>
<td>$9,968</td>
<td>$42,006</td>
</tr>
</tbody>
</table>

* Costs are in thousands and in 2001 dollars.

Source: Transit Development Plan, Figures 24 and 25, pp. 41-42.

The annual local funding needed to implement the plan would range from $16 million for the minimum service level to nearly $50 million for the maximum service with rail. In comparison, the total operating costs for transit in the two-county area for 2001 was $4.9 million, including federal, local and fare revenues. The plan assumes implementation would be incremental, with the minimum level achieved by 2005 and the maximum level by 2015. The "maximum-with-rail" alternative would replace some of the buses operating along the premium corridor when implemented.

The plan also notes the need for several follow-up plans:

- Comprehensive Transit Operations Plan
- Fleet Specifications and Procurement Plan
- Passenger Facilities Plan
- Major Investment Study for the Premium Corridor
- Maintenance Facilities Plan
- Organizational Development Plan

The last plan is in process by ValleyRide and should be completed by 2003.
Implementing the Transit Development Plan would require a significant increase in public funding. To generate $16 million to fund capital and operations for the minimum system, the following tax rates would be needed. All assume a local option tax in which all revenues would be retained in the two-county area.

- 0.5 percent sales tax. Current rate is 5.0 percent, which is collected by the State of Idaho and distributed in part back to local governments based on a state formula.

- 0.4 percent vehicle excise tax (a tax based on the value of the vehicle). Currently, no vehicle excise tax is collected by the State or by local governments. A registration fee is charged by the State and is put into the Highway Distribution Account. The Ada County Highway District does charge a $20 registration fee for vehicles with owners listed Ada County as their county of residence. This latter fee is a local option fee, under which funds are retained in the County.

- 10 cents per gallon gas tax. Current State tax is 25 cents, collected at the distributor level and put into the Highway Distribution Account. Another 18.4 cents per gallon (24 cents for diesel) is levied by the Federal government and put into the Federal Highway Trust Account or the Federal Transit Trust Account.

This plan does not advocate any one of the above measures, and they are listed simply to inform the reader about the level of effort involved in funding public transportation. Getting legislative and voter approval for any of these options will require extensive public involvement, both within the region and across the state.
I-84 Study (Public Transportation Related Recommendations)

The transportation demand management (TDM) element of the I-84 Study was tailored to implement the goal of 25 percent of all trips via non-single occupant vehicle (SOV) modes by the year 2020. To meet this goal within the I-84 Corridor, COMPASS emphasized the need to prioritize implementation of effective TDM measures. The TDM element was at the top of a long list of proposed interstate improvements. Travel demand analysis conducted by COMPASS in coordination with ValleyRide and ACHD Commuteride staff assumed a TDM element targeted to peak period commuter trips within the most heavily traveled section of I-84 (west of the Wye Interchange). To attain the 25 percent goal by 2020 the following items would need to be implemented:

- Transi: trips increase from 1 percent to 5 percent
- Vanpool/carpool increase from 10 percent to 12 percent
- Bike/walk remains at 3 percent
- Work at home remains at 5 percent

The TDM element included the addition of 18 park-and-ride lots, an ambitious marketing program, and implementation of the Intelligent Transportation System (ITS) Plan. Table 27 presents cost estimates for the TDM element of the I-84 Study. The future TDM facilities and the potential rail corridors are illustrated in Figure 36. The TDM policies supported several other considerations in the corridor. First, was the preservation of existing rail corridors in both Canyon and Ada Counties. Second, as new lanes are proposed for the freeway mainline, the potential for high occupancy vehicle (HOV) lanes would be considered. Third, each new interchange proposal would examine the potential for adding a park-and-ride facility and ramp metering on the entrance ramps.

Table 27: I-84 Corridor Transportation Demand Management Cost Estimate

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park-and-Ride Lots (18 new lots)</td>
<td>Capital & O&M</td>
<td>$16,000,000</td>
</tr>
<tr>
<td>Commuter Vans (34 new vans)</td>
<td>Capital</td>
<td>$1,200,000</td>
</tr>
<tr>
<td></td>
<td>O&M</td>
<td>$6,800,000</td>
</tr>
<tr>
<td>Marketing and Employer Programs</td>
<td>Operations</td>
<td>$12,000,000</td>
</tr>
<tr>
<td>Transit Intelligent Transportation Systems</td>
<td>Capital</td>
<td>$10,000,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$46,000,000</td>
</tr>
</tbody>
</table>

Annualized Cost for 20 Years

$2,300,000

Note: All cost estimates are in 2001 dollars. Includes employer-based TDM incentive programs such as those currently implemented by ACHD Commuteride. Costs shown exclude express bus services, which were covered in the Transit Development Plan estimates.
Figure 36: Future TDM Facilities and Rail Corridors

Rail Corridor Evaluation

ValleyRide is currently conducting a preliminary technical survey to assess the possible costs of acquiring the Union Pacific branch line between Nampa and Boise for a future commuter or light rail line. Union Pacific has not been approached about selling the line at the time of this plan.
Alternative Public Transportation Policies

Key Issues

Mobility between Ada and Canyon Counties is essential to the economic welfare and future livability of the region, but accessibility to the transportation network by all users is also a critical component of the system. To create a comprehensive regional system, alternative public transportation needs to be addressed at three levels: intercounty, countywide and the Boise metropolitan area. To reduce the demand on the transportation system in the community, policies need to be geared toward attaining 25 percent of travel within the region by alternative transportation during the peak hour as well as throughout the day.

This public transportation component of Destination 2025 looks at transportation needs at three levels: intercounty, countywide, and Boise Metropolitan Area. This creates a comprehensive regional transportation system. It strives to meet the vision of obtaining 25 percent of the travel by alternative transportation for the region. Policies to meet this vision are:

1. COMPASS will actively support ValleyRide as it coordinates all transit services in the region and develops dedicated funding source(s) for those transit services.

2. COMPASS will assist in development and implementation of the Treasure Valley Alternative Transportation Analysis recommendations developed in 1995. The analysis recommends to:
 - Modestly expand the existing transit system by targeting unserved areas (Nampa/Caldwell area and Meridian).
 - Link key origins and destinations.
 - Increase frequencies.
 - Provide connections between communities.
 - Offer incentives to encourage transit use.
 It also suggests protecting Union Pacific Railroad right-of-way for a future transit facility.

3. COMPASS will develop building blocks (i.e. start with vanpools/buses, then gradually build to a fixed guideway transit system) that can be increased to produce a comprehensive transit system that meets regional needs.

4. COMPASS will support continuation and expansion of the Commuteride program and work to assure adequate and consistent funding.

5. COMPASS will support development and implementation of a regional Park & Ride program to serve transit, carpool, and vanpool services.

6. COMPASS will support implementation of the Transit Development Plan as approved by ValleyRide and incorporated into this plan by reference.

7. COMPASS will support the operation and funding of the Boise and Rural Scrip Programs and the numerous vans operated through local Senior Centers.

8. COMPASS will work with local employers and governments to foster the use of alternative transportation through employee benefits.

9. COMPASS will develop and support legislation for funding public transportation.

10. COMPASS will assist local governments when requested in developing land use policies and designs to foster alternative transportation, specifically including higher densities and pedestrian oriented designs along transit routes and at major destinations.

11. COMPASS will assist local governments and businesses in the development of parking strategies to encourage use of alternative transportation.
12. COMPASS will study and report on options in the Treasure Valley for congestion pricing as a means to reduce automobile travel and enhance revenue available for public transportation.

13. COMPASS will actively support updates of the Transit Development Plan as adopted by ValleyRide. The Transit Development Plan and subsequent strategic planning documents will address markets, services, capital needs, park-and-ride and other intermodal facilities, financing, and policies over a five-year period. The area to be covered by the Transit Development Plan includes Ada and Canyon Counties.

14. COMPASS will monitor the percentage of funding from flexible sources going into alternative transportation projects and report this as a part of the annual transportation system performance report.

15. COMPASS will work with the Ada County Highway District, employer groups and chambers of commerce to develop a "best practices" manual of incentives for promoting alternative transportation.

16. COMPASS studies for roadway capacity expansion shall include analyses of alternative modes that may provide the needed capacity.

17. COMPASS will work toward developing level of service criteria for evaluation of transit service.
Chapter 8:

Ridge-to-Rivers Pathways Plan
Introduction

An essential component of Ada County's transportation system is an integrated system of non-motorized pathways that will help reduce the number of automobile trips in the county and provide recreational opportunities for hikers, bicyclists, runners and equestrians. The Ridge-to-Rivers Pathway Plan, adopted by the APA Board in 1993 and updated in 1996, defines the vision for this emerging regional system of transportation and recreation pathways, which will connect to destinations between the ridge of the Boise Front and the Boise and Snake rivers.

The freestanding Ridge-to-Rivers Pathway Plan (available at the COMPASS office) represents a vision that will meet essential transportation and recreational needs for all types of non-motorized pathway users and facilities.

The Ridge-to-Rivers Pathway System is composed of three distinct but interconnected pathway types:

1. **On-street Bikeways**

 These portions of the pathway system are designated on certain Ada County roadways as bicycle- and pedestrian-friendly routes, which will encourage bicycle and pedestrian use and thus reduces the number of automobile trips.

 ![On-street Bike Lane](Image)

 Figure 37: On-street Bike Lane

2. **Multiple-Use Paths**

 These off-street pathways, such as the Boise River Greenbelt, provide both recreation and transportation opportunities and connect to the on-street network. They also can be included on railway corridors or canal and utility rights-of-way.

3. **Multiple-Use Trails**

 These are unpaved trails for open-space recreation in the Boise and Eagle foothills, rural deserts and the Oregon Trail.

As an integral part of Destination 2025, this chapter briefly describes progress of the Ridge-to-Rivers Pathway Plan since 1993, the issues addressed in the pathway policies and projected funding, and concludes with policies.

Issues Addressed in This Chapter

COMPASS and other cooperating agencies need to continue building on the successes of past years and work toward expanding the boundaries of the pathway system beyond Ada County. Efforts need to continue in the following areas:

- Extending the Boise River Greenbelt to Eagle Island and ultimately into Canyon County.
- Pursuing opportunities to include the Union Pacific Railroad corridor and canal rights-of-way in the system and connecting them to the on-street network.
- Expanding the off-road trail network.
• Seeking new and maintaining existing landowner agreements in addition to funding ongoing trail maintenance and stewardship efforts.

Progress of Pathways Plan

The pathway system has matured since the adoption of the Ridge-to-Rivers plan in 1993. Some of the accomplishments to date include:

• Designating a bicycle engineer/planner at the Ada County Highway District.
• Hiring a trail coordinator by the Ridge-to-Rivers Partnership, a cooperative agency, to allow full-time trail maintenance and stewardship.
• Constructing 80 miles of designated trails on public and private land since 1992.
• Striping 75 miles of new bike lanes since 1991 by the Ada County Highway District. In 1991, there were only 4.5 miles of bike lanes in the system.
• Reviewing deficiencies in the on-street bikeway system by the Ada County Highway District citizen bicyclist committee.
• Considering bicyclist/pedestrian needs in the development review process.
• Extending the Greenbelt on Eckert Road from Warm Springs Avenue to Barber Park, including building a pathway bridge across the Boise River.

![Image](image-url)

Figure 38: The Greenbelt at Eckert Road

• Filling in gaps in the Greenbelt in Garden City and Boise, notably between Glenwood Street and Fairview/Main at the Boise River.
• Constructing a new bike/pedestrian bridge across the Boise River east of Municipal Park in east Boise.
• Building a pathway along Five Mile Creek in Meridian.
Funding Status

Funding for the Ridge-to-Rivers System has come from numerous sources, including federal, state and local agency budgets. The APA Board directed staff to give pathway projects significant priority and to aim for annual funding of approximately $200,000 (see the policies at the end of this chapter). Although pathway projects are eligible for federal Congestion Mitigation Air Quality funds, the Idaho Transportation Department, which administers those funds, has decided not to allocate any of those funds for pathway projects.

Since 1991, COMPASS has solicited applications for public funding to match federal funds for pathway projects, with goals that include:

- Looking for opportunities for eligible federal funding, particularly transportation enhancement funds (such as Surface Transportation Program local funds).
- Identifying all possible opportunities to add provisions for pathway development as part of larger roadway projects.
- Encouraging private development to include pathway projects as an integral part of their development consistent with the Ridge-to-Rivers system.
- Assisting local agencies in securing private donations for specific pathway projects.
- Seeking funding from other sources, such as State Parks and Recreation, the Rails to Trails Program, community development block grants, and other potential funding sources.

COMPASS does not have a pathway needs assessment to determine specific financial needs. A more generic list of funding sources within the $200,000 goal sought annually is more appropriate. The following annual projections update project funding for the next three years based on past performance.

Funding for Staff Positions

The Ridge-to-Rivers Partnership is a collaborative effort between local, state, and federal agencies to plan, implement, and manage the trail element of the Ridge-to-Rivers plan. Current focus is on the Boise Front and the Oregon Trail. Agencies participating in the effort include:

- Boise City/Boise Parks and Recreation *
- Ada County/Ada County Parks and Waterways *
- Bureau of Land Management *
- US Forest Service *
- Idaho Department of Parks and Recreation
- Idaho Fish & Game Department
- Natural Resources Conservation Service
- Ada Soil Conservation District

Agencies marked with asterisks are financial contributors to the Partnership. Funding for the Ridge-to-Rivers Partnership covers costs for a trails coordinator, trail crew foreman, a seasonal crew for trails operation and maintenance, and direct expenses such as materials.

Other Funding

These funds are used primarily for system improvements and are provided as follows:

Transportation Equity Act for the 21st Century (TEA 21)
$200,000 or pathway system improvements.
Idaho Transportation Department

The department has begun to incorporate paved shoulders when reconstructing state highways. This is consistent with the Ridge-to-Rivers Plan, and is encouraged to continue.

Ada County Highway District

Between 2003 and 2007, the Ada County Highway District proposes to spend $155,000 on "stand-alone" bikeway projects within ACHD’s right-of-way to complete gaps in the existing system. Projects would include striping lanes, adding shoulders, selected paving, etc. The above amount does not include bike lane projects included in proposed construction and reconstruction of streets in Ada County. Examples of projects proposed for including bike lanes are:

- 36th Street Extension, Cartwright Road to Bogus Basin (Preliminary Development)
- Five Mile Road, Fairview to Ustick (Preliminary Development)
- Floating Feather Road, Edgewood to Eagle (2004)
- Hill Road, Horseshoe Bend Road to State Street (2007)
- Holcomb Road, Boise to ParkCenter (2007)
- Linder Road, Franklin to Ustick (2007)
- Maple Grove Road, McMillan to Chinden (2005)
- Maple Grove Road, Fairview to Ustick (2007)
- Overland Road, Linder to west of Meridian Road (2007)
- Ustick Road, Five Mile to Cole (2007)

Trail User Fees

The concept of trail user fees has support among trail users. This plan supports efforts by specific user groups to raise funds that contribute to system improvements.
Pathway Policies

Plan Updates

1. COMPASS will work with local governments in both Ada and Canyon Counties to update the Ridge-to-Rivers Plan for inclusion in a future regional transportation plan. Among the elements of the plan will be:
 - Connections between the on-street and off-street pathway system, particularly the Greenbelt.
 - Preservation and acquisition of canal and rail corridors.
 - Pathway and street design standards.
 - Identification of responsible agencies for implementation and maintenance.

On-Street Pathways

1. Recognize that the bicycle is a vehicle with legal access to all public roads. Within engineering safety guidelines, roadway arterials, collectors and bridges will be designed for the needs of motor vehicle drivers, bicyclists and pedestrians. COMPASS will coordinate with implementing agencies and appropriate advisory groups in creating an Evaluation Matrix for bike lanes to supplement the current process. The full-time bike/pedestrian planner will be responsible for the development of this objective method to identify bike lane needs.

![Figure 39: Cyclist in Boise](image)

2. Support separation of the sidewalk from the traffic lanes on arterial and collector street projects included in Destination 2025 by strips of land, commonly known as parking strips.

Multiple-Use Paths

1. COMPASS will support funding to encourage the expansion of the Boise River Greenbelt to connect the Boise/Garden City Greenbelt path with the City of Eagle Greenbelt path-ultimately to the Canyon County line.

2. Encourage all new developments along waterways, railroad corridors, the benches or utility rights-of-way to include multiple-use paths or, trails or, at a minimum, reserve an easement for future use of such facility. Where necessary, a micro-path or easement for such should also be provided. Private property rights should not be violated by this Plan.

3. Develop consistent education and signage material from one community to another.

Destination 2025 – Regional Transportation Plan for Ada County

Community Planning Association 133
4. Increase access between the multi-use pathway and the on-street bikeway system to enhance the transportation and recreation of the pathway system.

5. If Union Pacific seeks to discontinue rail line service or vacates rail lines in Ada County, COMPASS will work with local governments and the Rails-to-Trails Conservancy to preserve and retain this railroad corridor for recreational paths, open space, and alternative transit uses to benefit current and future residents of the community.

Multiple-Use Trails

1. Continue to establish access agreements with private landowners for trails on private property. Only those trails permitted by landowners shall be shown on trail user maps.

2. Encourage multiple public/private ownerships to plan for trail systems in the area west of Bogus Basin Road, using the Foothills Open Space Management Plan as a guide.

3. Continue funding of the Ridge to Rivers Partnership to expand on the accomplishments to date.

4. The government agencies of Ada County, Eagle and public landholders should identify the lead agency to plan, implement, and manage the trail system in the Eagle foothills area.

5. Boise City and Ada County provide leadership in securing access and managing the Oregon Trail corridor, with support and assistance from the Bureau of Land Management and the Idaho State Historical Society.

6. Support the land agencies’ efforts to provide and manage recreation that does not impact the natural resources of the area.

7. Utilize the “Foothills Open Space Management Plan” for guidance in expanding and managing the trail component of the Ridge-To-Rivers Plan.

Funding

1. Support the use of at least $200,000 annually in Federal Aid funds for building pathways.

2. Continue to incorporate pathway facilities as part of roadway improvements at the state and local levels.

3. Continue to seek alternative funding, such as special grants, donations and other sources as available.

4. COMPASS will request Ada County Highway District to consider non-traditional funding sources, such as Community Development Block Grants, for street-related pathway improvements within its rights-of-way.
Chapter 9:
Urban Goods Movement
Introduction

Urban goods movement is the movement of goods into, out of, through and within the transportation planning area by all modes. This includes:

- Air, rail, and truck transportation
- Pipelines that transport petroleum, natural gas, water, and waste
- Collection and movement of trash
- Collection and movement of mail

Since pipelines are underground, they are not addressed in this chapter. Fostering greater efficiency in the movement of goods requires consideration of all activities involving urban streets, waterways, railroads, terminals, and loading docks. The movement of goods, both now and in the future, affects an area far beyond Ada County.

This chapter briefly describes the status and expansion plans for the Boise airport, the status of roadway and rail transportation, and the need for more planning for efficient urban goods movement.

Issues Addressed in this Chapter

While considerable effort has been devoted to developing planning techniques for people movement in urban areas, there has been no coherent approach to the study of goods movement. Local officials will need to be increasingly concerned about the impact of urban goods movement on the functioning of their transportation systems and local economies.
Boise Air Terminal Status and Expansion

Status

Current surface access to the airport is excellent, with three interchanges (Orchard, Vista and Broadway) serving the northern airport area and two (Gowen and the Isaac's Canyon) providing access to the southern area. The southern area now consists mainly of industrial and Air National Guard facilities.

Neither the airport plan nor the modeling performed by COMPASS indicates a need for reconstruction at any of the three interchanges serving the northern part of the airport. However, the Boise Airport Master Plan (February 2001) calls for Gowen Road to be realigned a half-mile south of a new third runway at a cost of $17 million. This realignment may tie back into Gowen or to Eisenmann Road, allowing access to either Gowen or to Isaac's Canyon interchanges on I-84. The new runway would be constructed south of the existing alignment of Gowen Road.

Driving the expansion of the Boise Airport is the forecasted increase in passengers, freight and airport operations. The Airport Master Plan provided the forecasts shown in Table 28.

Table 28: Boise Airport Activity Forecast

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers</td>
<td>1,421,851</td>
<td>2,620,000</td>
</tr>
<tr>
<td>Air Freight and Air Mail</td>
<td>42,438 tons</td>
<td>129,600 tons</td>
</tr>
<tr>
<td>Total Operations (Landings and Takeoffs)</td>
<td>179,891</td>
<td>257,980</td>
</tr>
</tbody>
</table>

Expansion Plans

Based on the forecasted increase, the Boise Airport Master Plan calls for an aggressive program of improvements to meet future demand, as well as solve existing problems. A major expansion and upgrade of the Boise Airport began in 1999 with the construction of new parking facilities. Expansion would continue as part of a phased process. Among the elements called for in the Master Plan are:

- Expanding parking facilities by 6,000 spaces (several phases)
- Relocating Air Traffic Control Tower
- Expanding Terminal Building (several phases between now and 2006)
- Expanding Terminal Building
- Building or extending runways
- Purchasing land for airport expansion or to control development in noise protection areas
- Relocating existing radar and other facilities
The total projected cost of all improvements, including some already completed, was estimated at $334.8 million.

Airport Influence Area

The Boise Airport represents a critical component in regional transportation for many reasons. It connects the Treasure Valley to the national and international economy—a major asset for many corporations when considering locating and expanding offices and plants. It provides residents easy access for personal and business travel. Finally, it is a massive investment in land and facilities, as indicated above in the expansion budget. Residential development around airports can put that investment at risk by exposing people to higher risk from aircraft operations and to noise. In many communities, airports were required to relocate to more remote areas due to pressure from nearby residents. One of the mechanisms to reduce the potential of inappropriate development around an airport is the establishment of an airport influence area.

Development within the airport influence area (shown in Figure 40) is required to meet conditions established by Boise City and Ada County. There are three sub-areas contained within the airport influence area:

- The innermost area does not allow any new residential uses. Manufacturing and commercial uses are permitted only with sound insulated buildings.
- The next area allows only low-density residential (in parts of this area) and manufacturing/commercial uses. Schools are not permitted. Noise sensitive areas of buildings must be sound insulated.
- The outermost area permits most uses allowed by the underlying zoning with a condition that new residences and schools be insulated against sound to achieve a reduction of 25 decibels.
Airport Influence Area, Ada County

Figure 40: Airport Influence Area
The Roadway System

While a large quantity of goods are transported into and out of the area by air, most goods movement in Ada County occurs on the roadway system in the form of deliveries. Except for government service functions such as mail delivery and garbage collection, most freight and many different types of products are moved by private industry. A number of firms engage in many different kinds of delivery operations ranging from route sales to deliveries to homes, retail stores and industrial sites.

Industrial and retail shippers and receivers have many requirements regarding time of shipment and time of delivery. In many cases, delivery is just one function in an operation such as producing and marketing perishable goods. Such conditions limit the potential for cooperation and consolidation of operations necessary to streamline goods movement within our community.
Rail Transportation

Rail transportation has been an integral part of Ada County's development since early days. A main line track was built through Kuna in the late 1800's. Construction in the 1920's of the Boise "cut-off," starting in Nampa and connecting back to the main line south of the City of Boise, was a major improvement in the County's tie to regional transportation. Due to poor ridership and reduced federal subsidies, Amtrak passenger service through Boise ceased in May 1997. Discussion about restarting rail service continues.

Although rail accounts for a small portion of goods movement in Ada County, many businesses continue to depend on access to rail as well as highway and air modes. The Boise cut-off serves many rail customers. Motive Power, for example, has a major rail shop in the southeast area of Boise, which depends on rail connections. Rail freight traffic is limited to local shuttles operated by Idaho Northern & Pacific Railroad, which leased track rights from Union Pacific Railroad, the owner of the line.

In August 1999, Union Pacific sought to abandon 18.2 miles of rail. The section is between the old town site of Orchard and Hillcrest (west of Isaac's Canyon Interchange). On April 17, 2000, Union Pacific donated 14.7 miles of the abandoned section to the City of Boise, which purchased the remaining 3.5 miles from UP in order to preserve the track for both commuter and intercity rail transportation. Figure 41 shows the railroad and the abandoned section.

Present Opportunities with Rail Corridors

Rail lines share the same community sensitivity issues as airports and interstates. Although the tracks were in place before most of the adjacent housing was developed, residents often are concerned about the noise and safety impacts of trains passing through their neighborhoods. Industries that depend on rail connections also may not be viewed as desirable neighbors when seeking to expand or relocate. Residents near the tracks, for example, may contest public uses in the corridor, such as a light-rail line.

Use of the rail corridor for commuter rail may require development or redevelopment to higher intensity mixed uses. National studies indicate that the area within a quarter-mile of a rail station should have residential densities of at least 30 units per acre, along with employment, shopping, and services within a short walk.

Trans-shipment of goods to and from rail cars and trucks has declined with the advent of container shipping, but the preservation of the rail corridor for freight will continue to be a priority in the area's economic development scheme. The corridor presents opportunities for freight and offers a precious resource for other transportation and utility needs in the form of a continuous, multiple-use corridor. Limited freight traffic on the Boise Cut-off actually constitutes a benefit, since main line tracks are frequently heavily used by freight trains of a mile long or more. This traffic often prevents consideration of the corridor for other uses such as fixed-guideway transit, pathways and utility transmission lines.

The length and speed of the main line freight train is an issue in one community – Kuna. While the train speeds present one kind of safety concern at the crossings, train stoppages in the Kuna area also create a safety issue. Development south of the tracks is barred to emergency services based on north of the tracks when trains up to 1.5 miles long are stopped for prolonged periods.

Resolutions to these issues exist and include the following:

- Plan and design land uses along the rail corridor that are not in conflict with rail traffic. Sound walls and noise-insulated construction can reduce the effects of noise on sensitive uses. New rail-oriented businesses can be designed to reduce effects on neighboring properties.
- Provide notice to buyers along the rail corridor about rail traffic.
- Develop corridor plans for redevelopment to support transit.
• Conduct environmental assessments of any public transportation use of the corridor. (If federal funds were used in implementing such a project, an environmental assessment would be the minimum requirement under the National Environmental Policy Act.)

Railroad Location, Ada County

Figure 41: Donated Railroad Section
The Need for More Planning

More Information Is Needed

Local government planners and engineers have limited data about the relationship of truck movement to the design and operation of the roadway system. Usually, to establish traffic volumes for planning purposes, projected truck trips are included in the total number of vehicle trips. While this approach may be adequate for determining levels of traffic flow, it may lead planners to ignore the special operating characteristics of trucks and the loading and unloading requirements that directly affect street and project design.

A Freight Movement Advisory Committee formed by APA in 1996 obtained only limited data on the inter-county flow of goods. This committee has been inactive for several years. More data are needed on specific movements, patterns, terminal facilities locations and destinations, the time it takes to move different types of goods and the kinds of modal transfers that take place within Ada County. These data are necessary to plan for increased efficiency and minimal routing schemes on the roadway system.

With the designation of the Boise urbanized area population as meeting the requirements of a "transportation management area" or TMA, federal regulations will require increased attention to and involvement of freight interests in metropolitan transportation planning.

Alternative Solutions Are Available

Federal requirements, specifically the Transportation Equity Act for the 21st Century, encourage local governments to consider planning for urban goods movement. In the past, Federal Transit Administration and Federal Highway Administration planning regulations stressed people movement. The planning regulations included examples of actions that might be included in the Transportation Demand Measures of the Transportation Improvement Plan. Only one is related to urban goods movement—restrictions on downtown truck delivery during peak hours. Such restrictions only consider goods movement in terms of the impact on people movement, although the efficient movement of goods should be a worthwhile end in itself.

Local governments have the immediate responsibility for dealing with traffic congestion and safety, which are significantly impacted by truck movements. Goods movement, particularly by truck, is influenced by local governments through traffic and parking regulations, licensing programs, zoning ordinances, and building codes. These actions are rarely orchestrated as part of an overall goods movement policy or coordinated with the actions of other levels of government.

A major concern of local governments officials is the hazard posed by trucks in residential neighborhoods. This can be a particularly severe problem when conditions lead to trucks not using suitable arterials, e.g., lack of direct connections across a physical barrier such as a river or heavy congestion on the arterials.

Delivery service takes up roughly half of the time spent by urban freight and service vehicles, and the majority of that time is spent parked. Alternatives to reduce delivery-related congestion include adequate reserved curb space for service and goods delivery, time limits for loading zones, and/or providing curb cuts to facilitate loading and unloading. Local governments also can implement zoning ordinances and building-related ordinances that require off-street loading facilities and storage space requirements.

The Ada County Highway District approved a truck route plan in 1999. The plan established likely routes for heavy through trucks. Implementation and enforcement of the truck route plan was conditional upon adoption of ordinances by the cities and Ada County, which have the police power to enforce truck routes. To date, no local government has adopted such an ordinance.
Urban Goods Movement Policies

1. COMPASS will seek to ensure preservation of corridors for transportation and utilities by the following strategies:
 a. COMPASS will coordinate with local governments to review the land use plan, zoning, and subdivision standards along the existing rail corridor to ensure appropriate land uses and site design to avoid encroachment and noise issues along corridor.
 b. COMPASS will work with Ada County and Canyon County governments, state agencies, and the Union Pacific railroad to evaluate alternative transportation uses for the existing rail corridor. Use of the corridor for a pathway system should be included in the alternatives.
 c. COMPASS will coordinate with other local and state governments to preserve the remaining rail corridor when all or part of the corridor is proposed for abandonment and sale.

2. COMPASS, in coordination with ValleyRide and other local governments, will develop a rail corridor acquisition plan to identify costs and issues, potential uses of the rail corridor, existing ownership status, and an appropriate entity for owning the rail right-of-way.
This page left intentionally blank
Chapter 10:
Transportation Enhancement Needs
Introduction

There is more to transportation planning than simply meeting travel needs. Today, Ada County and communities throughout the United States are designing transportation projects with features such as landscaping, bike paths, scenic easements and environmental mitigation that promote community pride or environmental well-being. Landscaping and other beautification projects along busy roadways convey a sense of pride and make our communities more attractive places to live and do business. In addition to enhancing a community’s image, improved landscaping can encourage people to walk or ride bicycles more often, which reduces reliance on automobiles.

While many of these enhancements are strongly supported by the public, agencies and communities face a wide range of funding, maintenance and right-of-way issues that make planning more of a challenge. For example, most street landscaping in newer areas is on private property, which usually leaves maintenance up to adjacent property owners or tenants. Gateways that lead into Ada County communities, particularly along arterial streets, offer major enhancement opportunities, but are often restricted by high land prices and limited right-of-way.

This chapter describes federal funding criteria for transportation enhancement projects; several Ada County enhancement project that are already funded, along with numerous potential projects; and cost issues. The chapter concluded with updated transportation enhancement policies approved by the APA Board.

Issues Addressed in This Chapter

Destination 2020 has identified numerous potential transportation enhancement improvement projects that are eligible for federal enhancement funds but will require a comprehensive inventory and mapping program. These potential projects must be evaluated and ranked by appropriate agencies, interest groups and the COMPASS Board. Various agencies, communities and private developers will also need to agree on financing and design standards for street landscaping projects.
Federal Funding Criteria

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) provided federal funding for certain "transportation enhancement" activities at the state and local level. Ten percent of ISTEA funding used by state and local agencies to build and expand roadways and transit facilities is available for these enhancement activities. The Transportation Efficiency Act of 1998 (TEA-21) continued this program and expanded the list of eligible activities to the 12 specific areas shown below. (Enhancement funds cannot be used for routine or customary elements of roadway construction and maintenance or for required mitigation.)

Figure 42: Cyclists on Eckert Bridge

Transportation Enhancement funding can be used for the following activities related to surface transportation:

- Pedestrian and bicycle facilities.
- Pedestrian and bicycle safety activities.
- Acquisition of scenic easements and scenic or historic sites.
- Landscaping and other scenic beautification.
- Historic preservation, rehabilitation and operation of historic transportation buildings, structures, or facilities, including historic railroad facilities and canals.
- Preservation of abandoned railway corridors, including conversion and use for pedestrian or bicycle trails.
- Control and removal of outdoor advertising.
- Archaeological planning and research.
- Environmental mitigation to address water pollution due to highway runoff or to reduce vehicle-caused wildlife mortality while maintaining habitat connectivity.
- Establishment of transportation museums.

The Idaho Transportation Department administers the federal funds and solicits proposals statewide each year on a competitive basis. The Idaho Transportation Department has agreed to support all of the activities eligible for enhancement funding except transportation museums. A seven-member Enhancement Advisory Committee reviews and ranks project applications, with the final decision made by the Idaho Transportation Board.
The Idaho Transportation Department requires a local match for this funding, based on a sliding scale, with a federal funding cap of $500,000. Table 29 shows Idaho Transportation Department available enhancement funds through 2006. Years 2002-2004 are already fully programmed, so new projects could not be added during the first three years.

Figure 43: Boise Depot

Table 29: Available Enhancement Funding in Idaho

<table>
<thead>
<tr>
<th>Year</th>
<th>Programmed Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>$5,354,000</td>
</tr>
<tr>
<td>2003</td>
<td>$5,642,000</td>
</tr>
<tr>
<td>2004</td>
<td>$5,642,000</td>
</tr>
<tr>
<td>2005 *</td>
<td>$5,642,000</td>
</tr>
<tr>
<td>2006 *</td>
<td>$5,642,000</td>
</tr>
</tbody>
</table>

Ada County Enhancement Projects

Destination 2025 has identified numerous potential landscaping projects along key roadways throughout Ada County that meet the criteria for federal transportation enhancement funding. These include several projects that are already funded and a list of potential landscaping and beautification projects along key "gateway" corridors that lead into Ada County communities.

These enhancement projects – particularly the gateway projects – have received strong support at public meetings and open houses. The projects are described below. Issues and policies dealing with historic preservation and pathway projects are described in Chapters 6 and 8.

COMPASS adopted its own criteria for establishing the priority of enhancement projects. The criteria are:

- Quality of experience. Enhancement of the "quality" or "experience" perceived by people using Idaho's transportation system.
- Value and cost. Effective, efficient use of Enhancement funds for projects or programs clearly related to transportation.
- Support. Financial commitments, pledged contributions, and expressed approval by government agencies, the public and non-profit groups in the area.
- Importance. Significance, uniqueness and urgency, or the priority ranking assigned to a project by a metropolitan or regional planning organization.
• Plans and goals. Advancement of Enhancement-related goals and provisions in state or local plans or programs.

• Project-specific criteria. Rating factors for each of the three main project groups (historic, scenic and environmental, and bicycle and pedestrian).

• Geographic equity. This criterion is applied by COMPASS and is intended to maintain the equity in distribution of projects around the region. Areas that have not had an Enhancement project approved in the last five years are awarded the most points, while areas with more than one project in the past five years receive the fewest points.

Scheduled Projects
Following are three projects funded with enhancement dollars and scheduled to be built:

• Garden Street bike/pedestrian trail to Main Street in Boise ($121,000).

• Oregon Trail Historic Easements in Ada County ($320,000).

• Capitol Boulevard landscaping and pathway improvements in Boise ($467,000).

Figure 44: Pedestrians on a pedestrian/bike path
Potential Gateway Projects

Following is a list of potential landscaping and roadway beautification projects eligible for enhancement funding (see Figure 46 and Figure 47 for gateway locations):

Gateway Corridors

Boise

1. Capital Boulevard (from Depot Hill to Capitol Building) as the ceremonial entryway into Boise.

![Figure 45: Capitol Boulevard](image-url)

2. Vista Avenue from Vista Interchange north to Overland Road and south to the Boise Airport.
3. Federal Way from Vista Avenue to Bergeson Street.
4. Franklin Road Interchange.
5. I-84 Corridor and couplet from I-84 to Orchard Avenue.
6. Broadway Avenue Interchange and Corridor from Warm Springs to I-84.
7. I-84 Corridor from Isaac Canyon Interchange Road to Meridian Road.
8. Chinden Boulevard from Cloverdale Road east to Garrett Street.
9. Orchard Street Interchange.
10. State Street from Highway 55 to non-designated point to east.
11. Warm Springs Avenue from Old Penitentiary Road east.
12. Fairview Avenue (undefined).
14. Gowen Road Interchange.
15. ParkCenter Boulevard from Broadway Avenue to eventual connection with Warm Springs Avenue.
17. Isaac Canyon Interchange.

Garden City

1. Chinden Boulevard from Garrett Street to east.
2. Glenwood Street from State Street to Chinden Boulevard.
Eagle
1. Eagle Road.
2. State Street-Alternate route and existing alignment of State Street.

Kuna
1. Highway 69 (Kuna/Meridian Road).
2. Linder Road.
3. Avalon Street.

Meridian
1. East First Street-north and south entrances.
2. Eagle Road-north and south entrances.
3. Cherry lane - west entrance.
4. I-84 - east and west entrances.
5. Fairview - east entrance.
6. Franklin Road - east and west entrances.
7. Overland Road - east and west entrances.
8. Meridian Road - north and south entrances.

Star
1. State Street (State Highway 44) - east and west entrances.
Gateway Areas, Ada County

See Boise and Garden City Gateway Areas Map

Figure 46: Ada County Gateway Areas
Gateway Areas, Boise and Garden City

Figure 47: Boise/Garden City Gateway Areas

Items to be considered for gateway landscaping and beautification include:
- Medians with trees, shrubs and/or flowers
- Ornamental streetlights
- A sign ordinance
- Development guidelines
- Welcome signs
- Special paving and amenities
- Parkway or boulevard landscaping strips

Landscaping within the right-of-way must meet traffic safety standards established by the Idaho Transportation Department and the Ada County Highway District to ensure that landscaping does not obstruct drivers' views. Large trees, for example, must be kept a minimum distance back from lanes and ramps on the interstate. Gateway improvements require the cooperation of area governments and the private sector. Leadership will be needed from the appropriate transportation agency to identify or negotiate funding for construction and engineering costs of landscape improvements and to help identify and apply for funding. Maintenance of gateway improvements, such as labor, equipment, power, water and materials, is normally the responsibility of local governments. Ideas and actions developed for gateway landscaping will demonstrate to adjacent owners the community and business benefits of making their own properties more attractive.

Cost Issues

Ada County Highway District's policy manual requires planter strips on all arterials and three-lane collectors unless waived by the Ada County Highway District. However, right-of-way is a major cost issue when the Ada County Highway District considers public street landscaping. Assuming land value of $50,000 per acre, the additional right-of-way needed to landscape one mile of new arterial or collector (26,400 square feet) costs about $264,000.

This additional cost can sometimes be partially absorbed when done in conjunction with earth berms or walls used to reduce noise from roadways. Landscaping is often used to improve the appearance of these sound control measures. Landscaping that is part of a street project may also be done to replace the landscaping removed from private property during construction.

Maintenance is also an important – and ongoing – cost factor. The Idaho Transportation Department and the Ada County Highway District require local governments or private entities to permanently maintain landscaping requested along local and state roadway interchanges. For example, the City of Boise is responsible for maintaining the landscaping along the Broadway/Chinden corridor. Nampa maintains the landscaping along I-84 within its boundaries. A church has agreed to maintain the landscaping of the Cole/Overtand Interchange project that abuts its property.

Cities also are responsible for tree pruning along their neighborhood streets. A 1995 study for the City of Boise concluded that 78 percent of the nearly 17,000 street trees had gone un-pruned longer than normal standards. A task force recommended that the city spend an additional $110,000 a year on tree pruning and removal alone.
Transportation Enhancement Needs Policies

1. COMPASS will consider use of Enhancement funds for developing a comprehensive inventory and mapping system to be used during the annual development of the Transportation Improvement Program (TIP). COMPASS will seek input from historic preservation agencies interested in developing such a system.

2. COMPASS will consider use of Enhancement funds for pathway implementation and corridor preservation during TIP development. COMPASS will use the evaluative criteria developed in cooperation with appropriate local agencies and groups for ranking such projects by the COMPASS Board.

3. COMPASS will work with appropriate local governments, Idaho Transportation Department, and Ada County Highway District to develop a model "Public Street Landscape Agreement" which will include items such as financial participation, design standards, and maintenance.

4. COMPASS will coordinate with appropriate local governments, Idaho Transportation Department, and Ada County Highway District during TIP project development to identify projects on gateway streets. The TIP will describe any landscape elements specific to these projects.

5. COMPASS will work with appropriate local governments, Idaho Transportation Department, and Ada County Highway District to develop standards for street landscaping that promote an attractive, efficient, and safe travel environment.

6. COMPASS will work with public and private entities, including the Chambers of Commerce and area developers, to increase private participation in street landscaping. Development standards, private sector financial participation, and public education will be explored.
Appendix 1-A:
Mitigation Guidelines Summary
This page left intentionally blank
Mitigation Policy Summary

APA Board Endorsement: February 17, 1997

Preamble

The mitigation process should be a component of all future transportation projects serving the area, affecting not only highway and street construction, but also public transportation (buses, rail and others), bike paths, and pedestrian walkways. Rather than viewing mitigation as "discretionary", implementing agencies should treat mitigation as an integral part of the projects.

The mitigation process and the policy should benefit the entire community as well as the neighborhoods in which the projects occur. Recognizing that an effective transportation system is vital to the future of the community, the costs or impacts of the projects should not fall unfairly on the residents, businesses and property owners of the streets and neighborhoods in which the projects occur.

The results of a well-designed mitigation policy will be:

- Less negative energy expended in implementation of projects.
- Reduce future mitigation problems.
- Better investment of tax dollars for future projects.
- Higher quality projects.
- Community needs served in a more timely fashion, while considering the efficient use of public funds.

The concepts described below were intentionally kept in an outline form. The implementing agencies will need the flexibility to consider how their policies and ordinances can incorporate these principles. This approach will best ensure that the policies are useful to the decision makers.

1. Public Involvement

With the heightened concern for citizen involvement in planning and design, the policies should:

a. Be clearly defined and in writing. The ultimate policies should be approved by the APA Board.

b. Be easily available to the public.

c. Clearly delineate who has authority to make decisions; consider and approve waivers, if any; and/or change or modify the policies.

d. Establish impact thresholds and proposed mitigation at the earliest possible time to ensure that planning and decision making reflect the needs of the project and the needs of the affected neighborhood(s). This should be when the principal features of the project and its impacts can be reasonably identified.

e. Specify that project proposals be initially presented by defining the problem/goal for the project, presenting one or more alternative design concepts to accomplish the goal, and the preferred alternative. The proposal and each of the alternatives should include impacts and mitigation(s).

f. Require a set of instructions for developing the specifics of mitigation for a project. These should include how affected parties are notified, what the process for meetings and review of mitigation design will be, and a defined appeals process for the affected neighborhoods. A consistent time frame for decision-making and appeals should be part of the policy.
g. Stipulate that the outcome of the mitigation process for each project will be a mitigation plan, consisting of design documents, narratives describing mitigation measures to be implemented as part of the project, and budgets.

h. Encourage a change in attitude and approach of government entities to implementing projects in Ada County, including the following principles:
 i. Negotiations are integral parts of project. Work with citizens as partners by encouraging “workshop sessions” in advance of formal hearings as part of process. When feasible, meetings should be in the community, not in “city hall.”
 ii. Agency should be responsive and equitable.
 iii. Avoid “completed” designs at initial meeting, while recognizing a certain level of detail is needed for informed participation. Be reviewed and updated by the implementing agency in coordination with APA every three to five years to reflect a changing community, changing laws, transportation modes and construction materials and practices. Any updates need to include public participation.

i. Ensure mitigation measures are indeed focused to address the major impacts of the project through community participation in planning and implementing the project. Mitigation stakeholders should include:
 i. Significantly impacted property owners and residents.
 ii. Adjacent property owners and residents.
 iii. Neighbors, communities, neighborhood associations
 iv. Local land use agencies, local planning and zoning commissions
 v. Special purpose districts and public service providers
 vi. Local and regional real estate associations
 vii. Businesses

j. Include stakeholders and other affected individuals early and often in project planning/design. While these groups should not have a veto over transportation projects benefiting the whole community, their input should be strongly considered in determining levels of mitigation and alternatives. Citizens must have the opportunity to be knowledgeable of their rights and responsibilities in the process.

k. Require communication of project plans, impact and status to stakeholders on a regular basis. As a project is developed and the impacts (noise, traffic volumes, design and financial limitations) to the affected areas are more clearly understood, these impacts need to be communicated. This includes any deviation from the original design concepts.

l. Require notification about decisions with a reliable mechanism (e.g., registered mail, phone calls, signs in the project area) to property owners, residents, and other affected parties, utilizing assessors mailing list for accuracy.

m. Improve the opportunities for future owners to understand the effects of roadway plans and mitigation decisions when they purchase the properties along affected roads. For example, information could be recorded with the property deed, and a signed statement could be required in which the buyer acknowledges these conditions.

n. Promote meaningful dialog through the use of surveys mailed to street residents and the extended neighborhood as the best way to determine needs and priorities along with corresponding open house meetings. A major new roadway connection project would start with an open-ended survey. The second survey would narrow the possibilities. The third would provide specific direction to the mitigation package.

2. Design
 a. Designation of “residential collectors” and relaxation of corresponding design standards is not in the long-term interest of community or neighborhood.
b. Projects need to be designed and estimated with mitigation factors as part of the project. Document project design standards: some project elements should not even be debated (i.e. sidewalks in urban areas, pedestrian cross lights at schools).

c. Sew existing trees and strive for visual appeal whenever feasible.

d. Provide appropriate landscape setbacks in development proposals beyond ultimate required ROW on any street designated as having collector volumes or higher.

e. Designs will include safe sidewalks with reasonable widths and, where feasible, set backs from curb.

f. Promote reduced speeds on streets in residential areas to support pedestrian and bicycle safety. Utilize innovative traffic-calming techniques.

g. Require developers along future major collectors or arterials to provide adequate landscaping/berm area prior to subdivision development.

h. Require appropriate lighting on collector and arterial streets.

3. Projects Subject to Mitigation Policy

a. Mitigation policies should be reasonably consistent among Federal, State, County, and municipal transportation projects. This would be similar to the process defined under the National Environmental Policy Act without restricting the policy to whether or not the project is federally funded.

b. Exclude projects within existing ROW that do not entail adding capacity. Examples of projects to be excluded would be: resurfacing, traffic signal improvements, curb/gutter/sidewalk/bike path additions, or replacements.

c. Exclude Federal-aid projects already subject to NEPA process.

4. Natural Environment

a. The mitigation policy should address fish and wildlife habitats, in accordance with state law for the Department of Fish and Game. The primary objective should be to protect fish and wildlife habitat and avoid population losses. Should these be unavoidable, the policy should provide for "compensation" under the following guidelines.

i. For long-term losses caused by habitat elimination or degradation, acquisition and improvement of alternate habitat should be provided rather than monetary restitution. The measures must be permanent and include funding necessary for annual operations, maintenance and monitoring if these are required to ensure that target goals for fish and wildlife benefits are achieved. Habitat programs should be located in the immediate area of loss. Offsite locations and different species may be substituted in compensation programs if "on-site" and "in kind" compensation is not possible.

ii. Monetary restitution, based on costs to replace lost resources, should be provided for losses caused by direct mortality if replacement of animals is not feasible.

iii. Whenever possible, replacement of losses should be by the same fish and wildlife species or by habitat capable of producing the same species that suffered the loss.

iv. Compensation levels will be based on loss of habitat and loss of potential for fish and wildlife production and recreation rather than numbers of animals or days of use of animals occurring at the time of loss.

v. In jointly funded projects requiring fish and wildlife mitigation, participating entities will share mitigation credit proportional to their contribution.

vi. For habitation impacts during routine and necessary projects such as new culvert placement, the policy should emphasize best management practices as prescribed in state or federal laws such as the Stream Channel Protection Act or Clean Water Act.
b. Air quality issues related to dust during construction should be addressed by developing and adopting a traffic management plan in coordination with the neighborhoods and businesses in the project area.

5. **Right of Way Preservation and Acquisition**

a. Develop a long term transportation plan (Destination 2025) and acquire ROW which will reduce the need for "after-the-fact" mitigation in the future.
 i. In the rural areas the plan should create a system with designated collectors and arterials.
 ii. Require staking of lots by developer along collector and arterial right-of-way lines.

b. To avoid unnecessary impacts in existing neighborhoods, planning should focus on:
 i. Design of access plans to support adequate internal circulation and minimize the number of access points to arterials.
 ii. Acquisition of right-of-way widths adequate for future lane requirements and which minimize noise and visual impacts on adjacent residences and other uses.
 iii. Development standards to ensure adequate off-street parking with restricted on-street parking.

c. Property buy-out options should be pursued and funded to allow early acquisition.

6. **Community/Neighborhood Integrity**

The policy should seek the following:

a. Maintain quality of life by incorporating measures (noise abatement, landscaping, safety features, etc.) to allow residents to function in their environment without suffering undue impacts. Mitigation should not be viewed as an opportunity to add amenities well beyond those needed to balance impacts.

b. Balance between community goals and neighborhood/resident desires through the creation of an equitable process that factors in:
 i. Community goals with regard to traffic circulation and congestion needs, gateway street status, landscape maintenance burden, etc.
 ii. Neighborhood needs regarding pedestrian/bicycle routes, aesthetics, neighborhood circulation, etc.
 iii. The needs of residents and businesses immediately adjacent to the street with regard to property values, safety, noise, etc.
 iv. The above is intended to create a partnership between the agency, the neighborhood, and residents and businesses along the street. Perhaps a third of the mitigation allowance targeted at each of the three levels would be an initial goal of the process. Certain factors on specific projects would call for a different division.

c. Promote the concept of "Master Planned" communities rather than urban sprawl subdivision. Keeping traffic localized within smaller boundaries may reduce some of the need for large arterial streets which will reduce need for mitigation.

7. **Financial**

a. Allow neighborhoods the option of using a Local Improvement District (LID) for extra improvements above those seen as base improvements or included as part of impact mitigation.

b. "Base line" mitigation should be funded by the public (community) at large or through impact fees, to the extent allowable. "Extra" mitigation would be available at an extra cost to the affected residents. Include funding options for the "extra" mitigation. Homeowners associations should also be willing to take responsibility for some long term maintenance issues that may result.
i. Landscaping. An inventory of existing landscaping along the project corridor should be done to provide the baseline for comparison of the build options. If the project affects a corridor defined as a "gateway" corridor in an adopted public plan, the baseline will be defined by a mutually approved landscape agreement between the implementing agency and the appropriate local government(s). This agreement should specify design, construction, and maintenance responsibilities.

ii. Visual concerns. An assessment of scenic views and glare (headlight and street light effects) should be conducted.

iii. Noise abatement. Established national standards appropriate to the existing land uses should be incorporated into the policy for a standard of noise acceptability. A noise level assessment for the existing condition should be established through measurement or modeling for comparison of the build options.

iv. Sidewalks. Baseline sidewalk placement and design standards would be consistent with those established in the implementing agencies design policies. Above the baseline would be:
 1. Non-standard sidewalk materials, such as brick.
 2. Additional right-of-way or construction costs for curvilinear sidewalks.
 3. Additional right-of-way or construction costs for sidewalks detached from the curb to an extent greater than the distance defined in the implementing agencies design policies, unless the safety study indicated the need for additional distance.

v. Streetlights. Baseline lighting would consist of lighting to mitigate hazards to motorists, pedestrians and other travelers as identified in the safety evaluation. Above the baseline would be:
 1. Lighting for other issues (e.g., crime) unrelated to transportation.
 2. Non-standard lighting treatments, unless required to meet glare or historic district requirements. (Implementing agencies will need to define standard lighting treatments in their design documents.)

vi. Safety. A accident history of the project corridor should be conducted to provide a baseline. In addition, accident rates for comparable streets should be calculated to allow a community standard for comparison.

vii. Air quality. Established national standards for carbon monoxide and very fine particulates (PM_{10} and PM_{2.5}) should be incorporated into the policy for a standard of acceptability. An air quality assessment for the existing condition should be established through measurement or modeling for comparison of the build options.

viii. Private property impacts and compensation. The baseline process is defined in the rights-of-way acquisition policies of the implementing agency.

ix. Pedestrian access. Unless identified in the safety analysis, pedestrian facilities meeting standards in the implementing agencies design policies would be considered as baseline. Pedestrian bridges, tunnels, etc. would be above the baseline.

 c. All local government entities need to take ownership for problems and issues to ensure there can be cooperative and satisfactory resolution. The transportation agencies should be responsible for the initial construction of mitigation. The respective local government (municipalities or the County) should be responsible for on-going maintenance of landscaping and streetlights.

 d. There should be no pre-defined floor or ceiling on the percentage of transportation construction funds budgeted for mitigation. Make the magnitude of the mitigation expenditure commensurate with the magnitude of changes to the impacted area, using community wide standards.
e. To the extent allowable under State law, the formula to determine roadway impact fees should include baseline mitigation costs as part of the projects’ costs.

8. **Issue Identification**
 a. Identify Impacts. All project assessments should incorporate the following elements:
 i. Short term (including construction) and long term consequences of the project and the mitigation.
 ii. Direct and indirect (adjacent, nearby and distant) impacts.
 iii. Recognition of the difference between rural and urban needs. The policy adopted by the implementing agencies would need to define rural and urban areas.
 iv. Assessment of the project impacts on individuals, neighborhoods, and businesses.
 v. Definition of the degrees and types of impacts, where possible using a threshold determination of whether or not there is an impact.
 vi. Recognition of past decisions’ impacts on neighborhoods. When future projects are planned for those areas, an effort should be made to mitigate these impacts.
 vii. Degree of increased traffic flow.
 viii. Noise increase.
 ix. Historic impact based on ownership, current and desired use, national and state lists and eligibility criteria for historic designation.
 x. Neighborhood and business issues.
 xi. Pedestrian and bicycle safely, access, and mobility.
 b. Income level of neighborhood should not be a factor in mitigation.
 c. Present mitigation options for each element identified through the assessment process. For example, address noise levels higher than the accepted standards through buffers (berms, noise walls), modifying buildings to attenuate noise (insulation, double glazed windows, etc.) and traffic factors (i.e., speeds and trucks).
Appendix 1-B:

Previous Transportation Planning in Ada County
1961-1978

The first known transportation plan in Ada County created a metropolitan transportation plan approved by the Ada County Commission in 1961, followed by the Boise Metropolitan Transportation Study, completed in 1975. Both of these efforts created a functional transportation map, which established the network of arterial and collector streets to serve transportation needs. APA updated this in 1978.

1982 Plan

APA's first major plan led to adoption of a 1982 Transportation Plan for Northern Ada County ("The 1982 Plan," APA Report No. 4-83), which was based the following assumptions about transportation needs between 1982 and 2000:

- A regional mall would be located in the downtown Boise area.
- Transit ridership would increase from 2 percent of all work trips to 15 percent by 1987, and then maintain that level through 2000.
- Major residential growth would occur in Southeast and Northwest Boise.

Projects completed from The 1982 Plan included:

- The Broadway-Chinden Connector.
- The Maple Grove Road Overpass of I-84.
- Additional lanes on Curtis Road, Franklin Road, Chinden Boulevard, and other roads.
1992 Plan

The 1992 Plan updated the 1982 Plan (APA Report No. 17-92) following discussions about two major recommendations in the plan concerning an extension of Curtis Road to Chinden Boulevard and a realigned connection of Cole Road to Glenwood Street. Major assumptions in The 1992 Plan were:

- A lower growth rate than The 1982 Plan, with a forecast of only 290,000 people by 2010.
- New travel patterns based on the location of a regional mall near Milwaukee Street and Franklin Road and establishment of major employment centers outside the downtown Boise area.
- A more conservative estimate of future transit ridership, assuming that transit's share would be from 3 percent to 4.5 percent of the work trips.
- Increased residential growth forecasts for the West Bench and West Ada County areas.

Major projects completed from the 1992 plan included:

- Widening State Street from 15th to 23rd Streets and approaches to Veteran's Memorial Parkway.
- Widening Glenwood Street from State Street to Chinden Boulevard, including widening bridge.
- Widening I-84 from Eagle Interchange to the Wye Interchange (I-84/I-184).
- Improvements to Vista Avenue, Gary Lane, Franklin Road, Beacon Street.
- Improving Veteran's Memorial Parkway from State Street to 36th Street.
- Completion of the Bench/Valley Corridor Study.
- Cole/Overland Road intersection.
- Rerouting State Highway 21 from I-84 to the Diversion Dam.

Other projects programmed but not built or funded by 1995 included:

- Chinden Boulevard from Eagle Road to Hewlett Packard main entrance.
- Five Mile Road from Franklin Road to Victory Road (5 lanes), Overland Road from Eagle Road to Five Mile Road (5), McMillan Road from Cloverdale Road to Maple Grove Road (3), Curtis Road from Franklin Road to Morris Hill (5), Five Mile Road from Franklin Road to Usick Road (5), Victory Road from Orchard Street to Cole Road (5).
- Eagle Alternate Route (Eagle Bypass).
- Federal Way from Amity Road to Gowen Road (5), Federal Way from Vista Avenue to Amity Road (5).
- I-184 from Curtis Road to the Flying "Wye".
- I-84 Flying "Wye".
- State Highway 55 (Eagle Road), Fairview Avenue to City of Eagle, and widening/realignment from State Street north.
- ParkCenter Boulevard across Boise River in the vicinity of Walnut Street.

In addition to road projects, the following alternative transportation measures were implemented from the 1992 plan:

- Addition of bike lanes to major streets resulting from the Ridge-to-Rivers Pathway Plan.
- Expansion of routes and additional buses for fixed-route services provided by Boise Urban Stages.
- Expansion of vanpool routes and vehicles for Ada County Highway District's Commuteride program.
- Completion of sections of the Greenbelt pathway, including improvements to links between the street system and the Greenbelt.

1996 Plan

The 1992 Plan, Destination 2015 (APA Report No. 96), was adopted in February 1996 by the APA Board. Some of the key issues addressed by Destination 2015 included:

- Growth around the regional shopping mall, Boise Towne Square Mall, was higher than projected.
- Overall growth in Ada County exceeded the annual 2 percent growth rate assumed in the 1992 Plan, with annual growth rates in the early 1990's exceeding 4 percent.
- Patterns of growth continued to show western Ada County and Southeast Boise outpacing other areas, with the City of Meridian leading in single-family residential development in 1995.

Transportation Task Forces were consulted in the Cities of Eagle, Kuna and Meridian as part of the annual budget development process. One major component of Destination 2015 was creation of a "Community Team," a group of nearly 100 members appointed by the APA Board to develop a set of priorities and vision statements for the Plan (See Chapter 2 – Public Involvement).

Destination 2020 built upon the 1992 Plan and the results of the Bench Valley Study, which had its origins in 1992 Plan and evaluated transportation options in a 33-square-mile area bounded by Overland Road, State Street, Eagle Road and Orchard. The major projects recommended and either completed or budgeted from the 1996 Plan included:

- Chinden Boulevard (US 20/26) from Eagle Road to the Hewlett-Packard main entrance.
- Curtis Road extension and related improvements from Fairview Avenue to Chinden Boulevard.
- Five Mile extension from McMillan Road to Chinden Boulevard.
- I-84 widening from Cole Road to Broadway Avenue.
- Kuna/Meridian Road (State Highway 69) widening.
- Maple Grove Road extension from McMillan Road to Chinden Boulevard.
- ParkCenter East Bridge (2 lanes only).
- ParkCenter West Bridge.
- Pine Street from Locust Grove Road to Eagle Road.
- Ustick Road extension to new Curtis extension.

Destination 2020 also included a major policy that set a goal to have 25 percent of all trips made by alternative modes, including carpools, buses, walking, biking and telecommuting. To achieve this, Destination 2020 incorporated key policies, including:

- All major streets should be considered for bike lanes or bike paths.
- APA would support the findings of the 1995 study, "Public Transportation in the Boise Metropolitan Area: A Community Vision for Transit" (produced by Boise Urban Stages).
Appendix 1-C:
Ada County Planning Thresholds
Ada County Planning Thresholds

The Ada County Roadway Capacity Guidelines for Planning Applications is a general planning guidance for policymakers of roadway thresholds using Annual Average Daily Traffic (AADT). These thresholds (rounded to the nearest 500) were endorsed by the Community Planning Association Board on February 24, 1997.

Table 30: Ada County Planning Thresholds

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>No. of Lanes</th>
<th>LOS C</th>
<th>LOS D</th>
<th>LOS E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>4</td>
<td>60,000</td>
<td>70,000</td>
<td>82,000</td>
<td>peak hour = 10% at LOS ‘E’; 11% at LOS ‘C/D’</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>90,000</td>
<td>110,000</td>
<td>128,000</td>
<td>peak hour = 10% at LOS ‘E’; 11% at LOS ‘C/D’</td>
</tr>
<tr>
<td>Multi-lane Rural / Suburban (Limited Access Highway)</td>
<td>4</td>
<td>60,000</td>
<td>70,000</td>
<td>80,000</td>
<td>uncontrolled intersections</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>30,000</td>
<td>35,000</td>
<td>40,000</td>
<td>signal control at intersections</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>90,000</td>
<td>110,000</td>
<td>120,000</td>
<td>uncontrolled intersections</td>
</tr>
<tr>
<td>Two-lane Rural Highways</td>
<td>2</td>
<td>9,000</td>
<td>14,500</td>
<td>23,000</td>
<td>level terrain</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8,000</td>
<td>12,000</td>
<td>21,000</td>
<td>rolling terrain</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5,000</td>
<td>8,500</td>
<td>18,000</td>
<td>mountainous terrain</td>
</tr>
<tr>
<td>Urban / Suburban Collectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Business District (Downtown Area)</td>
<td>2</td>
<td>6,500</td>
<td>7,000</td>
<td>8,000</td>
<td>with parking</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7,500</td>
<td>8,500</td>
<td>9,500</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7,500</td>
<td>8,500</td>
<td>9,500</td>
<td>with parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9,000</td>
<td>10,000</td>
<td>11,000</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15,000</td>
<td>17,000</td>
<td>15,800</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>17,500</td>
<td>20,000</td>
<td>22,000</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8,000</td>
<td>9,000</td>
<td>10,000</td>
<td>one-way, with parking</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9,500</td>
<td>10,500</td>
<td>11,500</td>
<td>one-way without parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12,000</td>
<td>13,500</td>
<td>15,000</td>
<td>one-way, with parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14,000</td>
<td>15,500</td>
<td>17,500</td>
<td>one-way without parking</td>
</tr>
<tr>
<td>Non-Business District (Suburban/Urban Area)</td>
<td>2</td>
<td>8,500</td>
<td>9,500</td>
<td>10,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10,000</td>
<td>11,000</td>
<td>12,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16,500</td>
<td>18,500</td>
<td>20,500</td>
<td></td>
</tr>
<tr>
<td>Facility Type</td>
<td>No. of Lanes</td>
<td>LOS C</td>
<td>LOS D</td>
<td>LOS E</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Urban / Suburban Arterials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Business District</td>
<td>2</td>
<td>9,500</td>
<td>10,500</td>
<td>12,000</td>
<td>with parking</td>
</tr>
<tr>
<td>(Downtown Area)</td>
<td>2</td>
<td>11,000</td>
<td>12,500</td>
<td>14,000</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11,500</td>
<td>12,500</td>
<td>14,000</td>
<td>with parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13,500</td>
<td>15,000</td>
<td>16,500</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22,500</td>
<td>25,000</td>
<td>28,000</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>26,500</td>
<td>30,000</td>
<td>33,000</td>
<td>without parking</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12,000</td>
<td>13,500</td>
<td>15,000</td>
<td>one-way, with parking</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14,000</td>
<td>15,500</td>
<td>17,500</td>
<td>one-way without parking</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21,000</td>
<td>23,500</td>
<td>26,000</td>
<td>one-way, without parking</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>28,000</td>
<td>31,500</td>
<td>35,000</td>
<td>one-way without parking</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>35,000</td>
<td>39,500</td>
<td>43,500</td>
<td>one-way without parking</td>
</tr>
<tr>
<td>Non-Business District</td>
<td>2</td>
<td>12,500</td>
<td>14,000</td>
<td>15,500</td>
<td></td>
</tr>
<tr>
<td>(Suburban/Urban Area)</td>
<td>3</td>
<td>15,000</td>
<td>17,000</td>
<td>18,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>25,000</td>
<td>28,000</td>
<td>31,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>30,000</td>
<td>33,000</td>
<td>37,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>34,000</td>
<td>38,000</td>
<td>42,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>40,000</td>
<td>45,000</td>
<td>50,000</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2:
COMPASS' Public Involvement Policy
This page left intentionally blank
COMPASS PUBLIC INVOLVEMENT POLICY
Community Planning Association of Southwest Idaho (COMPASS)
Adopted by Resolution 4-94, March 21, 1994
Updated, November 16, 1998
Updated, June 19, 2000

POLICY: The planning process of the Community Planning Association of Southwest Idaho (COMPASS) shall include an active public involvement process that provides comprehensive information, timely public notice, full public access to key decisions, and supports early and continuing involvement of the public in developing plans.

Some of the methods that may be used to support this policy include:

1. Active Public Involvement
 a. Public meetings (theater style, facilitated workshops, open house, public hearings)
 b. Focus groups
 c. Public opinion surveys
 d. Ad hoc committees and task forces

2. Comprehensive Information
 a. Meeting dates/sites/agenda for COMPASS Board meetings posted on Internet site
 b. Major documents available at Internet site
 c. Presentations to organizations identified as stakeholders
 d. Planning fairs and other joint public meetings held with similar agencies

3. Timely Public Notice
 a. Paid advertisements
 b. Media contacts, news releases, and public service announcements
 c. Legal notices

4. Full Public Access to Key Decisions
 a. Publication of meeting dates/sites
 b. Availability of draft documents and informational materials
 c. Open house meetings to discuss projects/plans
 d. Public hearings, as appropriate

5. Early Citizen Involvement
 a. Facilitated public workshops
 b. Initial project lists created using citizen input
 c. Comment periods

6. Continuing Citizen Involvement and Feedback
 a. Stakeholders list of interested groups, businesses, neighborhoods, elected officials, agency staffs, and citizens.
 b. Summary transcripts of public comments to elected officials prior to their decisions.
 c. Citizen comments, staff recommendations, Board decisions distributed to COMPASS Internet site, city halls, public libraries, and the COMPASS office.
d. Appropriate utilization of electronic media.

COMPASS staff will tailor a specific public involvement process for each plan subject to this planning process for review by public officials from affected areas, their representatives, and/or representatives from affected constituent groups. These procedures will comply with and generally exceed all federal, state, and local laws, rules, and regulations regarding public involvement.
Appendix 3:
Major Roadway Project Details
This page left intentionally blank
Projects

The following descriptions identify briefly the scope of the projects and the reason why these projects are recommended for construction within the next 20 years. The numbers for each project serve only as an identifier and do not represent any ranking or priority.

1. **30th Street**

 Description: Construct 30th St. between Main St. and Rose St. to three lanes
 Cost: $4,200,000

 Background/Justification of Project: This project was moved from preservation to the construction list as a request from Ada County Highway District. This is a new roadway extending from Main Street to Rose Street and is intended to alleviate pressure on 27th and State Streets. By 2025, the projected traffic will range between 8,700 and 10,500 vehicles per day.

2. **36th Street**

 Description: Construct 36th St between existing 36th St. and Cartwright Rd. to two lanes
 Cost: $2,500,000

 Background/Justification of Project: This project was added to the construction list during the amendment to Destination 2020. With the Curtis Rd extension complete, this new roadway offers direct access to Bogus Basin Rd from I-184. This project is intended to alleviate some of the pressure on Harrison Blvd.

3. **Amity Road**

 Description: Widen Amity Rd. between Federal Way and Eckert Rd. to three lanes.
 Cost: $2,100,000

 Background/Justification of Project: This project is from the final recommendations in the Southeast Boise Circulation Plan adopted August 18, 1997. It also states Amity Rd. will be preserved for an eventual four to five lane facility. The widening of Amity Rd. coupled with Eckert Rd. realignment offers a more direct route to parts of Southeast Boise.

4. **Broadway Bridge**

 Description: The project would replace the existing structure (piers/beams/deck) and widen the bridge to six lanes.
 Cost: $3,400,000

 Background/Justification of Project: This project has been in the plan for several years. Deterioration of the structure of the bridge will require reconstruction of this 30-year-old bridge. Increased traffic on Broadway Ave. due to downtown growth, ParkCenter employment, Boise State University expansion, and the completion of the Front /Myrtle St. couplet justify the widening during the reconstruction project. Even with the West ParkCenter River Crossing Project, by 2025 the projected traffic is over 50,000 and will exceed its four-lane capacity.
5. Broadway Avenue Interchange
Description: Reconstruct the interchange and add capacity to the ramps.
Cost: $13,500,000

Background/Justification of Project: This project was identified in both the I-84, Orchard Street Interchange to Gowen Interchange Study completed by CH2M Hill and the I-84 Corridor Study completed by Washington Infrastructure Services Group. The need for this project is threefold: the existing design of the interchange cannot accommodate additional lanes of capacity on I-84 with adequate shoulders; the structures are in need of repair; and the existing design cannot accommodate the anticipated demand. The 2025 projected traffic for the eastbound off and on ramp volumes range from 18,500 to 37,300 vehicles per day.

6. Cole Road
Description: Widen Cole Rd. between Victory Rd. and Century Ln. to four lanes.
Cost: $1,900,000

Background/Justification of Project: During the previous update, a recommendation from the public was made to include the widening of Cole Rd. to serve the existing and developing industrial area. By 2025, the projected traffic for this section is 30,000 vehicles per day.

7. Cole Road
Description: Widen Cole Rd. between Overland Rd. and Franklin Rd. to four lanes.
Cost: $2,200,000

Background/Justification of Project: Continued from Destination 2015. Completion of this link will provide a continuous four to five lane facility between Overland and Hill Roads via Glenwood St. / Gary Lane. By 2025, the projected traffic is 47,000 vehicles per day.

8. Eagle Road & Fairview Avenue
Description: Urban Interchange
Cost: $7,000,000

Background/Justification of Project: This project was moved from the preservation list in Destination 2015 to the build list in Destination 2020 due to construction of the ‘Crossroads Mall’, an 800,000 square-foot development. The projected traffic, near the intersection, for 2025 on Eagle Rd. is 49,000 vehicles per day and 45,000 vehicles per day on Fairview Ave. This urban interchange will allow through-traffic to continue without delay and turning movements are handled with a series of signals.

9. Eckert Road
Description: Realign Eckert Rd. from Amity Rd. across the Boise River.
Cost: $2,700,000

Background/Justification of Project: This project is from the final recommendations in the Southeast Boise Circulation Plan adopted August 18, 1997. It will replace the bridge and realign Eckert and Amity Roads to provide a more direct connection. As a result, through traffic on East Boise Ave. will be discouraged.
10. Emerald Street / Executive Drive widening
Description: Widen/construct Emerald St./Executive Dr between Five Mile Rd. and Orchard St. to five lanes. This project includes widening of the Emerald St. overpass at I-184.
Cost: $9,200,000
Background/Justification of Project: Commercial and industrial growth in the West Bench area, combined with residential growth both in the West Bench and Meridian areas, have led to growing congestion along the east-west corridors. Emerald St./Executive Dr will provide relief to Franklin Rd. and Fairview Ave. By 2025, the projected traffic will be near or above 45,000 vehicles per day on Emerald St., with the higher volumes near Milwaukee St.

11. Federal Way
Description: Widen Federal Way between SH 21 and Technology Way (new) to five lanes. Was named Memory Lane in Destination 2015.
Cost: $1,000,000
Background/Justification of Project: Micron expansion and general commercial/industrial growth in this corridor support the increase. Sharp peak demands will overload the existing two lanes, although 2025 travel forecasts indicate only 20,000 vehicles per day.

12. Five Mile Road
Description: Widen Five Mile Rd. between Fairview Ave. and Ustick Rd. to three lanes.
Cost: $3,600,000
Background/Justification of Project: Continued from Destination 2015. Widening Five Mile Road to three lanes will bring the road up to standard and provide a turning lane for traffic to safely access the residential areas along this road. By 2025, the projected traffic is 22,000 vehicles per day, which would exceed the capacity of a three-lane road.

13. Five Mile Road
Description: Widen Five Mile Rd. between Franklin Rd. and Fairview Ave. to five lanes.
Cost: $3,800,000
Background/Justification of Project: Continued from Destination 2015. This project combined with the new Five Mile Interchange will improve north/south access to the interstate. By 2025, the projected traffic is 35,000 vehicles per day.

14. Franklin Road
Description: Widen Franklin Rd. from Eagle Rd. and Five Mile Rd. to five lanes.
Cost: $6,800,000
Background/Justification of Project: Commercial and residential development in the West Bench and Meridian areas will add traffic to this already heavily traveled corridor. By 2025, the projected traffic is 40,000 vehicles per day.

15. Glenwood Street
Description: Widen Glenwood Street from Chinden Blvd. to State Street to seven lanes.
Cost: $3,500,000 (not including possible expansion of the Glenwood Bridge)
Background/Justification of Project: Development throughout the West Bench, Northwest, and Eagle areas will maintain high demand on Glenwood Street, with the 2025 projected traffic levels of up to 60,000 vehicles per day. Commuting patterns will continue to shift to more north-south, cross river movements.
16. Glenwood Street/ Cole Road couplet

Description: Glenwood Street and Cole Rd. will be connected with a two-way couplet from the junction of Glenwood Street & Cole Rd. to Mountain View Dr. Each leg of the couplet will have two lanes in one direction to handle through travel, with one lane running in the opposite direction to allow for local traffic. This will reduce cut-through travel in the adjacent neighborhoods.

Cost: $2,600,000

Background/Justification of Project: This Bench/Valley project is ranked after Curtis / Ustick Extension, Maple Grove Rd. extension, and Five Mile Rd. extension in priority. Traffic on the existing Cole Rd. / Mountain View Dr. alignment would reach 28,000 vehicles per day by 2015. This volume would normally require five lanes to operate at an acceptable level of service. The couplet will provide the same capacity with two three lanes roads. By 2025, the projected traffic for the couplet (both legs) is 29,000 vehicles per day.

17. Hill Road

Description: Improve Hill Rd. from Gary Ln. to 36th St. to two to three lanes with curb, gutter, and sidewalk. This project is now under study by Ada County Highway District to determine the potential of diverting through traffic onto north-south Streets: Gary Ln., Collister St., and 36th St.

Cost: $5,500,000

Background/Justification of Project: Development in northwest Boise, Eagle and the Foothills area will continue to affect Hill Rd. and State St. By 2025, the model projects as many as 14,000 vehicles per day between Collister St. and 36th St. will use Hill Rd. Additional or improved north-south connections (e.g., Curtis Rd. extension and the Glenwood St. widening) should reduce some of the demand. Diversions of Hill Rd. traffic onto north/south streets is an essential part of the Foothills Interim Plan.

18. Holcomb Road

Description: Construct Holcomb Rd. from ParkCenter Blvd. to Boise Ave. or to Amity Rd. at three lanes. Preserve right-of-way for eventual five lanes following the construction of the East ParkCenter River Crossing (design and scope contingent upon corridor study).

Cost: $800,000

Background/Justification of Project: This project is from the final recommendations in the Southeast Boise Circulation Plan adopted August 18, 1997. The Boise Comprehensive Plan includes a major "activity center" north of the river in the vicinity of Barber Flats. This land use, combined with Micron expansion and growth in the commercial activity in the far southeast area, will require improved connections.

19. I-84

Description: Widen I-84 from Garrity Blvd. Interchange in Canyon County to Ten Mile Rd. to six lanes.

Cost: $12,200,000

Background/Justification of Project: Growth in commuting between Canyon and Ada Counties will be over 106,000 vehicles per day on the Interstate at the county line. Proposed new interchanges at Ten Mile Rd. and Star Rd. in Canyon County (based on a Canyon County recommendation) will lead to more congestion on one of the busiest stretches of highway in Idaho. This project was recommended in the I-84 Corridor Study completed Fall 2001.
20. I-84

Description: Widen I-84 from Ten Mile Rd. to Eagle Rd. Interchange to eight lanes.
Cost: $17,500,000

Background/Justification of Project: Growth in commuting between Canyon and Ada Counties will range between 118,000 and 128,000 vehicles per day on the Interstate. Proposed new interchange at Ten Mile Rd. will lead to more congestion on one of the busiest stretches of highway in Idaho. This project was recommended in the I-84 Corridor Study completed Fall 2001.

21. I-84

Description: Widen I-84 from Eagle Rd. Interchange to Wye Interchange to eight lanes.
Cost: $21,300,000

Background/Justification of Project: Growth in commuting between Canyon and Ada Counties will be over 160,000 vehicles per day on the Interstate. The proposed new interchange at Ten Mile Rd. will lead to more congestion on one of the busiest stretches of highway in Idaho. This project was recommended in the I-84 Corridor Study completed Fall 2001.

22. I-84

Description: Widen I-84 from Curtis Rd. to Broadway Ave. to eight lanes.
Cost: $123,600,000

Background/Justification of Project: This project was identified in both the I-84, Orchard Street Interchange to Gowen Interchange Study completed by CH2M Hill and the I-84 Corridor Study completed by Washington Infrastructure Services Group. By 2025, traffic along this corridor will range from 138,000 - 150,000 vehicles per day. Population and employment growth in the southeast area of Boise (notably Micron) will create significant travel delays unless capacity is added plus the pavement is in need of replacement. A significant part of the cost is due to the need for noise walls along the north side of the interstate and moving utilities. The cost shown does not include the cost to improve the Orchard, Vista or Broadway interchanges, which are necessary to accommodate additional through lanes.

23. Kuna Mora Rd. and SH 69 (Kuna-Meridian Rd.)

Description: Extend both Kuna Mora Rd. and SH 69 to connect.
Cost: $8,000,000

Background/Justification of Project: The Kuna Transportation Task Force and citizen comments at the Kuna Community Team Workshop recommended this project. This project will provide a better route to Kuna - Mora Rd. and the southeastern part of the county.

24. Linder Road

Description: Widen Linder Rd. between Franklin Rd. and Ustick Rd. to three lanes.
Cost: $4,400,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. This project is in response to the increased demand on Linder Rd. due to current and future development. By 2025, the projected traffic is 18,000 vehicles per day, which is near the limit for a three-lane road.
25. Linder Road Overpass
Description: Extend Linder Rd. over I-84 (two lanes).
Cost: $1,000,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. This project will help alleviate the congestion on the Meridian Rd. overpass and provide additional north/south access in the City of Meridian. By 2025, the projected traffic is 10,000 vehicles per day.

26. Locust Grove Road
Description: Widen Locust Grove Rd. between Victory Rd. and Overland Rd. to five lanes.
Cost: $2,500,000

Background/Justification of Project: The Ada County Highway District recommended this project for inclusion in Destination 2025. This project will help alleviate the congestion on Meridian Rd. and East 1st St. and is related to the new Locust Grove overpass (refer to number 29). By 2025, the projected traffic is over 10,000 vehicles per day.

27. Locust Grove Road
Description: Widen Locust Grove Rd. between Franklin Rd. and Fairview Ave. to five lanes.
Cost: $2,700,000

Background/Justification of Project: The Ada County Highway District recommended this project for inclusion in Destination 2025. This project will help alleviate the congestion on Meridian Rd. and East 1st St. and is related to the new Locust Grove overpass (refer to number 29). By 2025, the projected traffic is over 16,000 vehicles per day.

28. Locust Grove Road
Description: Widen Locust Grove Rd. between Overland Rd. and Franklin Rd. to five lanes.
Cost: $4,300,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. This project will help alleviate the congestion on Meridian Rd. and East 1st St. and is related to the new Locust Grove overpass (refer to number 29). By 2025, the projected traffic is over 14,000 vehicles per day.

29. Locus: Grove Rd. Overpass
Description: Extend Locust Grove Rd. over I-84 (four-five lanes).
Cost: $4,700,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. This project will help alleviate the congestion on Meridian Rd. and East 1st St., and will also provide additional north-south access in the City of Meridian. By 2025, the projected traffic is 14,000 vehicles per day.

30. Maple Grove Rd.
Description: Widen Maple Grove Rd. from Franklin Rd. to Overland Rd. to five lanes (including the widening of the overpass).
Cost: $7,500,000

Background/Justification of Project: Continued commercial development in the area of the West Bench will add to already significant congestion and delay. By 2025, this section of Maple Grove Rd. will carry up to 30,000 vehicles per day. The addition of a center turn lane will decrease delays caused by left turning vehicles.
31. Maple Grove Rd.
Description: Widen Maple Grove Rd. between Overland Rd. and Victory Rd. to three lanes.
Cost: $1,900,000
Background/Justification of Project: Continued residential and commercial development in this area will add more traffic to this section. The addition of a center turn lane will decrease delays caused by turning vehicles. By 2025, the projected traffic is 20,000 vehicles per day, at the limit for a three-lane road.

32. Maple Grove Extension
Description: Construct Maple Grove Rd. between McMillan Rd. and Chinden Blvd. to five lanes.
Cost: $5,900,000
Background/Justification of Project: This project was first identified during the Bench/Valley Study in 1995. It was originally part of a group of roadway projects improving the travel connection to and from the bench area. This project will also alleviate the traffic using Mitchell St. (primarily residential area) from McMillan Rd. to Chinden Blvd. By 2025, the projected traffic is 17,000 vehicles per day.

33. Meridian Road & East 1st Street - change to 1 way couplet
Description: Implement Meridian Rd. and E 1st Street, one-way couplet, in Meridian, between Cherry Lane (Fairview Ave) and the junction of Meridian Rd. / East 1st Street just north of I-84. Work would require improvements to Meridian Rd. and signal changes. The junction of the couplet at the north end (Cherry Lane) should be designed to reduce turn movements in this already congested corridor.
Cost: $2,500,000
Background/Justification of Project: The Meridian Comprehensive Plan supports this project, which is designed to reduce long-term traffic congestion in downtown Meridian. Traffic A couplet would reduce congestion, improve pedestrian safety, and allow better signal coordination. This project is conditional upon the completion of the Linder and Locust Grove overpasses, the amount of relief these two projects provide to Meridian Rd. and East 1st St. may decrease the need for the couplet. By 2025, forecasts indicate up to 56,000 vehicles per day using this corridor (both Meridian Rd. and East 1st Street).

34. Meridian Interchange redesign
Description: Add off ramp loop to handle southbound traffic exiting the westbound lanes of I-84. Project would require the existing on ramp to westbound I-84 be relocated further north on ITD property now used for material storage. Residential and commercial uses adjoin this site.
Cost: $22,200,000
Background/Justification of Project: Traffic forecasts for 2025 shown that the westbound loop ramp will carry 9700 vehicles per day if the Ten Mile interchange is built. Otherwise, the traffic will be over 13,000 vehicles per day. Growth south of I-84 will lead to a high number of left turns across Meridian Road. The loop ramp will reduce left turns and separate the northbound and southbound traffic.
35. Meridian Road widening
Description: Widen Meridian Rd. between Franklin Rd. and Cherry Lane to three lanes
Cost: $500,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. Refer to the project listed above, 33 - Meridian Road & East 1st Street. By 2025, the projected traffic is 28,000 vehicles per day.

36. Orchard St Interchange
Description: Reconstruct the interchange and add capacity to the ramps.
Cost: $17,000,000

Background/Justification of Project: This project was identified in both the I-84, Orchard Street Interchange to Gowen Interchange Study completed by CH2M Hill and the I-84 Corridor Study completed by Washington Infrastructure Services Group. The need for this project is twofold: the existing design of the interchange can not accommodate additional lanes of capacity on I-84 with adequate shoulders; and the structures are in need of repair. The 2C2S projected traffic for the eastbound off and on ramp volumes range from 9,400 to 19,000 vehicles per day.

37. Overland Road
Description: Widen Overland Rd. between Locust Grove Rd. and Eagle Rd. to five lanes.
Cost: $2,700,000

Background/Justification of Project: This project was recommended by the Meridian Ad Hoc Transportation Group. Due to the amount of growth in Meridian south of the interstate and the additional access provided by the completion of the Locust Grove overpass adding a continuous turn lane will decrease congestion brought on by turning vehicles. By 2025, the projected traffic is 30,000 vehicles per day.

38. Pine Street Construction
Description: Build Pine Street from Locust Grove Rd. to Eagle Rd. to two/three lanes.
Cost: $1,800,000 – developer funded

Background/Justification of Project: Growth in the Meridian area and the West Bench has already led to congestion on the major east-west corridors, notably Franklin Rd. and Fairview Ave. The Pine Street corridor (the same alignment as Emerald Street / Executive Dr) will provide relief to these arterials and provide access to the growing industrial area in this corridor. With forecasted volumes up to 22,000, a three-lane facility will provide additional capacity for anticipated growth in the area.

39. Railroad/Indian Creek crossing in Kuna - new
Description: Construct a bridge across the Union Pacific railroad tracks and Indian Creek in the vicinity of Kuna. (Location subject to evaluation by ACHD in cooperation with Kuna and Union Pacific.) The proximity of the tracks to the creek, and the requirement for 22 feet of clearance between the tracks and the bridge, necessitate a very large and expensive structure.
Cost: $8,000,000

Background/Justification of Project: Growth in the Kuna area south of the mainline Union Pacific tracks, combined with the speed and number of the trains, has created a significant safety problem. Safety of motorists crossing the tracks and emergency vehicle access, particularly when trains are stopped across both existing at-grade crossings, is noted as major reasons for this project. Kuna’s plan emphasizes the importance of this project to future development.
40. SH 16 (Emmett Hwy)
 Description: Construct a new river crossing at Ten Mile Rd. to connect Hwy 16 to I-84
 Cost: $22,900,000
 Background/Justification of Project: This project has been moved from preservation to build
 at the recommendation of the Ada County Transportation Task Force and from the public
 meeting held in Star. An additional river crossing will provide better connectivity between SH
 16 and the interstate. By 2025, the projected traffic is 14,000 vehicles per day.

41. SH 55 (Hwy 55)
 Description: Widen Hwy 55 north of Beacon Light Rd. to five lanes.
 Cost: $1,800,000
 Background/Justification of Project: This project was included at the recommendation of the
 Ada County Transportation Task Force and from the public meeting held in Star. This project
 may be for the longer term, beyond 20 years. Currently, the model does not justify five lanes
 on SH 55 north of Beacon Light Rd. because the model forecasts weekday traffic not
 recreational demand. One option is adding passing lanes for additional safety. By 2025, the
 projected traffic is 13,000 vehicles per day.

42. Technology Way - new road
 Description: Build a new arterial, Technology Way, from Isaac Canyon IC to SH 21 as a five-
 lane facility.
 Cost: $3,300,000
 Background/Justification of Project: This road will provide access to the new Isaac Canyon
 interchange from Micron and Columbia. In addition, it will improve access to SH 21 from
 northbound I-84. By 2025, the projected traffic is 24,000 vehicles per day.

43. Ten Mile Road
 Description: Widen Ten Mile Rd. between Franklin Rd and Pine St. to five lanes
 Cost: $3,100,000
 Background/Justification of Project: The Ada County Highway District recommended this
 project for inclusion in Destination 2025. This project will improve access to the proposed Ten
 Mile Rd. Interchange. By 2025, the projected traffic is 24,000 vehicles per day.

44. Ten Mile Road
 Description: Widen Ten Mile Rd. between Pine St. and Cherry Ln. / Fairview Ave. to five
 lanes.
 Cost: $1,300,000
 Background/Justification of Project: The Ada County Highway District recommended this
 project for inclusion in Destination 2025. This project will improve access to the proposed Ten
 Mile Rd interchange. By 2025, the projected traffic is 22,000 vehicles per day.

45. Ten Mile Road
 Description: Widen Ten Mile Rd. between Cherry Ln. / Fairview Ave. and Ustick Rd. to five
 lanes.
 Cost: $2,100,000
 Background/Justification of Project: The Ada County Highway District recommended this
 project for inclusion in Destination 2025. This project will improve access to the proposed Ten
 Mile Rd interchange. By 2025, the projected traffic is 20,000 vehicles per day.
46. Ten Mile Road Interchange

Description: Construct a new interchange at Ten Mile Rd.

Cost: $25,400,000

Background/Justification of Project: This project has been moved from preservation to build at the recommendation of the Meridian Ad Hoc Transportation Group. This project is consistent with Meridian’s Comprehensive Plan and will provide relief on the already congested Meridian Interchange, Meridian Rd. and East 1st St. This interchange location was also recommended during a Market Analysis completed by John Church and included in the I-84 corridor study.

47. Vista Avenue Interchange

Description: Reconstruct the interchange and add capacity to the ramps.

Cost: $15,200,000

Background/Justification of Project: This project was identified in both the I-84, Orchard Street Interchange to Gowen Interchange Study completed by CH2M Hill and the I-84 Corridor Study completed by Washington Infrastructure Services Group. The need for this project is threefold: the existing design of the interchange can not accommodate additional lanes of capacity on I-84 with adequate shoulders; the structures are in need of repair; and the existing design can not accommodate the anticipated demand. The 2025 projected ramp volumes range from 11,000 to 18,000 vehicles per day.

48. Warm Springs Avenue

Description: Reconstruct Warm Springs Ave. between Penitentiary Rd. and west of Barber Dam.

Cost: $2,900,000

Background/Justification of Project: This is a safety/maintenance project and continued from Destination 2015. Additional though lanes will not be added.
Appendix 4:

Air Quality Conformity Determination
This page left intentionally blank
Carbon Monoxide (CO) Conformity Determination

Summary

An Air Quality Conformity Determination was conducted in accordance with Federal Conformity Regulations (40 CFR 51 and 93) for Destination 2025. A test of Build/No-Build analysis showed projects in the Destination 2025 contribute to the reduction of CO and PM$_{10}$ emissions in the area.

Introduction

Through an agreement with the State Department of Environmental Quality, COMPASS is designated as the "lead agency" for development of the CO SIP for Northern Ada County. Ada County is a Not Classified non-attainment area for carbon monoxide (CO). The County has not experienced a violation of the National Ambient Air Quality Standards (NAAQS) for CO since 1987. As such, the area is not required to comply with a submitted emission budget for CO.

Prior to March 12, 1999, Ada County was also designated a non-attainment area for Particulate Matter (PM$_{10}$). On that date, EPA's Administrator signed the revocation of Ada County's Pre-Existing PM$_{10}$ Standards and its associated non-attainment designation. This ruling was challenged in the Ninth District Circuit Court. On January 31, 2001 the U.S. Department of Justice approved a settlement agreement directly related to this legal challenge. A major component of the settlement agreement involves an update to the PM$_{10}$ SIP for Ada County that must be completed and approved by the EPA prior to October 1, 2003. Until the completion of the PM$_{10}$ Maintenance Plan, local agencies must reduce PM$_{10}$ emissions through a variety of control measures. Presently, Ada County is the only area in the nation without a NAAQS for PM$_{10}$. Although, Ada County is subject to the statewide PM$_{10}$ standards established by the Idaho Department of Environmental Quality.

Status of Plans

CO State Implementation Plan: In 1982 and 1984 APA developed an Air Quality Improvement Plan to satisfy the requirements of the 1977 Clean Air Act. In 1994, a revision of the Transportation Control Measures was prepared which established achievable Transportation Control Measure goals for the next three years. The 1994 Minor Revision to the 1984 CO SIP, the applicable CO SIP was approved by the US EPA in January 1995. The Idaho Department of Environmental Quality has developed and submitted a Limited Maintenance Plan for Carbon Monoxide in Northern Ada County to the EPA in December 2001.

PM$_{10}$ State Implementation Plan: In 1991 the State of Idaho submitted a PM$_{10}$ SIP to the Environmental Protection Agency. This document identified wood burning as a major source of PM$_{10}$ in the area. A PM$_{10}$ Contingency Plan was submitted to the Environmental Protection Agency in July 1995, as a supplementary document to the PM$_{10}$ SIP. The Contingency Plan included roadway-sweeping practices aimed at reducing fugitive dust after sanding of roadways in the wintertime that was adopted by the Idaho Transportation Department (ITD) and Ada County Highway District (ACHD). The PM$_{10}$ SIP is rather ambiguous in demonstrating the share of Mobile sources, includes no transportation control measures for PM$_{10}$ emissions and is based on outdated data. As of March 12, 1999, conformity to this document is no longer applicable to Ada County. As a requirement of the PM$_{10}$ lawsuit the Department of Environmental Quality is preparing a PM$_{10}$ Maintenance Plan for Ada County and it will be submitted to the EPA by October 1, 2002.

Interagency Consultation

On March 30, 2001, the Idaho State Legislature approved the proposed regulations associated with the conformity implementation plan for the State of Idaho. These rules were submitted to the EPA and public comment was solicited under the Federal Register publication dated April 12,

The Conformity SIP requires that affected areas establish an Interagency Consultation Committee (ICC). The first official meeting of the Ada County ICC was held on March 16, 2001. The procedures and methodologies employed in the development of Destination 2025, the long-range transportation plan, were reviewed and approved by the Committee on March 4, 2002.

Means of Quantitative Analysis

This Air Quality Conformity Demonstration is based upon the latest calibration of COMPASS's travel forecasting model, the latest update of the network and the latest demographic projections for the area.

Travel Forecasting Model

COMPASS utilizes VIPER (database) and "TP+" (formerly called TranPlan), a travel-forecasting model widely used across the country, for its transportation planning and analyses. COMPASS' modeling activities are performed under review of the Transportation Model Advisory Committee (TMAC), a technical committee formed by the COMPASS Board of Directors. The Committee is made up of experts and officials in transportation modeling and traffic engineering from both the public and private sectors. TMAC makes recommendations to the COMPASS Board of Directors on issues related to the improvement of COMPASS' travel forecasting model.

The TP+ model is regularly maintained and updated to include all completed and anticipated transportation plans, programs and projects in the area. The model is updated with the latest demographic projections for the area. Under supervision of the TMAC, the model is periodically calibrated to reflect the actual travel patterns and motorists' behavior in the area. The last calibration was completed and approved by TMAC in June 1999. TP+ is a corridor analysis package, compared to Model T-2, which is a nodal analysis model. Therefore, many improvements at the intersection level are reflected in the model by increasing speed of the link. The output of the model is a snapshot of 24-hour Average Daily Traffic (ADT) for each link of the transportation network. The travel-forecasting model produces total vehicle miles traveled (VMT) by various types of facilities, average speed of the network and other data relevant to Air Quality Conformity Determination.

Emission Analysis Model. The emission analysis model used for demonstration of Air Quality Conformity is Mobile 5b, which is the most current CO emission analysis model recommended and approved by the EPA. The Mobile 5b model uses data about the area's climate, elevation and characteristics of the Vehicle Inspection Maintenance Program. The network Vehicle Miles of Travel (VMT) and average vehicle speed are entered into the Mobile 5b model to develop CO emission factors and total CO emission estimates. Appendix B includes the Mobile 5b model input parameters and resulting output.

Note At present time there is no data available on the additional emissions of the out-of-county vehicles that are not subject to the Ada County Auto Emission Test Program. Therefore, all vehicles driven in Ada County have been assumed to have the same emissions as those registered in Ada County. COMPASS will make efforts to develop a database on these vehicles and their emission impacts for the future Regional Emission Analyses.

The sub-categorization of the Ada County's fleet data entered in the Mobile 5 Model is consistent with the sub-categorization used in the Idaho Department of Environmental Quality's CO Maintenance Plan. COMPASS realizes the need for a more up-to-date database on the breakdown of the fleet and will work with cognizant agencies to secure this data.
Demographic Data

The bases of all of COMPASS’ planning activities are the 2000 Census and the area’s projected population and employment for years 2000, 2010, 2020 and 2025. The population and employment projections for Ada and Canyon Counties are made by the Demographic Advisory Committee (DAC), composed of demographers, developers, representatives of local industries and governments, and citizens. The demographic projections made by the DAC are endorsed and adopted by the COMPASS Board as the official population and employment projections for the area. The demographic projections for Ada County which were used in the COMPASS’ Travel Forecasting Model are:

Table 31: Ada County Demographic Projections

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2010</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>300,904</td>
<td>402,949</td>
<td>466,745</td>
<td>491,520</td>
</tr>
<tr>
<td>No. of Households</td>
<td>113,408</td>
<td>150,791</td>
<td>174,321</td>
<td>183,415</td>
</tr>
<tr>
<td>Employment*</td>
<td>199,026</td>
<td>255,937</td>
<td>174,321</td>
<td>330,791</td>
</tr>
</tbody>
</table>

Source: based on COMPASS employment estimate from 1997.

Test of Build/No-Build Analysis

To perform a test of Build/No-Build Analysis, the emissions of Baseline Scenarios for the horizon years of 2006, 2010, 2020, and 2025 were compared with the Action Scenarios of those years.

Table 32: Baseline Scenario in 2006 No-Build vs. 2006 Build Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT [VMT/day]</th>
<th>Average Speed [mph]</th>
<th>CO Factor [g/mile]</th>
<th>CO Emissions [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>7,424,995</td>
<td>28.5</td>
<td>17.99</td>
<td>133,576</td>
</tr>
<tr>
<td>Build</td>
<td>7,396,558</td>
<td>28.8</td>
<td>17.77</td>
<td>131,437</td>
</tr>
<tr>
<td>Difference</td>
<td>28,437</td>
<td></td>
<td></td>
<td>2,139</td>
</tr>
</tbody>
</table>

Table 33: Baseline Scenario in 2010 No-Build vs. 2010 Build Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT [VMT/day]</th>
<th>Average Speed [mph]</th>
<th>CO Factor [g/mile]</th>
<th>CO Emissions [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>8,796,751</td>
<td>27.8</td>
<td>18.42</td>
<td>162,036</td>
</tr>
<tr>
<td>Build</td>
<td>8,777,777</td>
<td>28.5</td>
<td>17.70</td>
<td>155,367</td>
</tr>
<tr>
<td>Difference</td>
<td>18,974</td>
<td></td>
<td></td>
<td>6,669</td>
</tr>
</tbody>
</table>
Table 34: Baseline Scenario in 2020 No-Build vs. 2020 Build Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT [VMT/day]</th>
<th>Average Speed [mph]</th>
<th>CO Factor [g/mile]</th>
<th>CO Emissions [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>11,730,156</td>
<td>25.6</td>
<td>19.58</td>
<td>229,676</td>
</tr>
<tr>
<td>Build</td>
<td>11,637,053</td>
<td>27.4</td>
<td>18.30</td>
<td>212,958</td>
</tr>
<tr>
<td>Difference</td>
<td>93,103</td>
<td></td>
<td></td>
<td>16,718</td>
</tr>
</tbody>
</table>

Table 35: Baseline Scenario in 2025 No-Build vs. 2025 Build Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT [VMT/day]</th>
<th>Average Speed [mph]</th>
<th>CO Factor [g/mile]</th>
<th>CO Emissions [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>12,635,003</td>
<td>25.1</td>
<td>20.32</td>
<td>256,745</td>
</tr>
<tr>
<td>Build</td>
<td>12,493,386</td>
<td>27.0</td>
<td>18.61</td>
<td>232,502</td>
</tr>
<tr>
<td>Difference</td>
<td>141,707</td>
<td></td>
<td></td>
<td>24,243</td>
</tr>
</tbody>
</table>

Table 36: Summary of CO Emission Reductions

<table>
<thead>
<tr>
<th>Horizon Year</th>
<th>CO Emission Reduction [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2,139</td>
</tr>
<tr>
<td>2010</td>
<td>6,669</td>
</tr>
<tr>
<td>2020</td>
<td>16,718</td>
</tr>
<tr>
<td>2025</td>
<td>24,243</td>
</tr>
</tbody>
</table>
Particulate Matter (PM10) Conformity Determination

Summary
In 1991, the Idaho Department of Environmental Quality (DEQ) developed a PM10 State Implementation Plan (SIP). As a supplementary document to the PM10 SIP, a Contingency Plan was developed in 1995 and was submitted to EPA. The Contingency Plan includes a systematic roadway sweeping practice aimed at reducing fugitive dust after sanding of roadways in the wintertime. The Idaho Transportation Department (ITD) and the Ada County Highway District (ACHD) have adopted this practice. This PM10 SIP is rather ambiguous in defining an emission budget for Mobile Sources and includes no TCMs. This is due to the fact that the document was developed prior to the promulgation of the 1993 Conformity Regulations, when no quantitative demonstration of Air Quality Conformity was required for PM10. Furthermore, it does not account for the phenomenal growth the area experienced during the 1990s.

On March 12, 1999, EPA’s Administrator signed the revocation of Ada County Pre-Existing PM10 Standards and its associated non-attainment designation. This ruling was challenged in the 9th District Circuit Court and the parties agreed to a settlement on January 30, 2001. The Settlement Agreement requires the development of a PM10 Maintenance Plan that must be submitted to EPA by September 30, 2002.

An Air Quality Conformity Determination was conducted pursuant to 40 Code of Federal Regulations (CFR) Parts 51 and 93 (Federal Conformity Regulations), for the Destination 2025 Long Range Transportation Plan. A Build/No-Build analysis demonstrated that projects in the Long Range Plan contribute to a reduction in PM10 emissions for the area.

This voluntary PM10 conformity analysis is based on information and data from the Final Carbon Monoxide Conformity Demonstration of Destination 2025. Please reference that document for more information.

Background
Specifically, a voluntary test of Build/No-Build Analysis was performed for Particulate Matter (PM10) on all transportation documents per Community Planning Association (COMPASS) Board’s policy. The following procedures and calculations are not required under the Federal Conformity Rules; they are to fulfill the COMPASS Board’s policy.

Table 37: Summary Results of Test of Build/No-Build for PM10

<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline [kg/day]</th>
<th>Action [kg/day]</th>
<th>Difference [kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>25,542</td>
<td>25,411</td>
<td>(131)</td>
</tr>
<tr>
<td>2010</td>
<td>30,264</td>
<td>29,043</td>
<td>(1,221)</td>
</tr>
<tr>
<td>2020</td>
<td>41,114</td>
<td>38,483</td>
<td>(2,631)</td>
</tr>
<tr>
<td>2025</td>
<td>44,828</td>
<td>41,508</td>
<td>(3,320)</td>
</tr>
</tbody>
</table>

Build/No-Build Conclusion
The test of Build/No-Build shows that implementing projects in Destination 2025 will decrease PM10 emissions by 131 kilograms per day in FY2006, by 1,221 kilograms per day in FY2010, by 2,631 kilograms per day in FY2020, and by 3,320 kilograms per day in FY2025.