Pre-Concept Report
Holly Street/NNU Roadway Reconfiguration

Prepared for:
City of Nampa
and
Community Planning Association of Southwest Idaho

Prepared by:
LOCHNER
1/31/18
Table of Contents

1 Project Summary ... 1
2 Project Description .. 3
3 Alternatives... 9
4 Right Of Way .. 16
5 Environmental Scan Summary ... 16
6 Project Stakeholders ... 17
7 Public Involvement Plan .. 17
8 Project Schedule and Milestones ... 17
9 Cost Estimate ... 18
10 Potential Funding Sources ... 18

Attachment A. Traffic Analysis
Attachment B. Environmental Scan
Attachment C. Public Involvement Plan
Attachment D. Cost Estimate

List of Figures

Figure 1. Project Area... 2
Figure 2. Holly Street, Roosevelt Ave to Sherman Ave (North Segment) .. 3
Figure 3. Holly Street, Sherman Ave to Colorado Ave (Main Segment) ... 4
Figure 4. Holly Street, Colorado Ave to Hawaii Ave (South Segment) ... 5
Figure 5. Existing Roosevelt Avenue .. 5
Figure 6. Crash Type .. 6
Figure 7. Census Boundaries .. 8
Figure 8. Alternative A – Three Lanes (Preferred Alternative) ... 10
Figure 9. Alternative B – Four Lanes ... 11
Figure 10. Missing Sidewalk on Roosevelt Avenue .. 13
Figure 11. Pedestrian Crossing Locations ... 14
Figure 12. Bulb-out with Bike Ramps (Source: Spokane Transit) .. 15
Figure 13. Planned Transit Stops ... 16
1 Project Summary

1.1 Purpose and Need
The City of Nampa requested COMPASS assistance to obtain a pre-concept report for the Holly Street/Northwest Nazarene University Roadway Reconfiguration project to address bicycle and pedestrian safety along that corridor, as well as along the section of Roosevelt Avenue between Holly Street and 18th Avenue South. COMPASS selected Lochner to develop the pre-concept report.

The Nampa Bicycle and Pedestrian Master Plan lists bike lanes along the Holly Street corridor (Roosevelt Avenue to Hawaii Avenue) as a high priority. Figure 1 shows the project area. The corridor provides an alternate north - south route to 12th Avenue Road. Cyclists use the corridor to access Northwest Nazarene University (NNU), the Nampa Recreation Center, Liberty Park, businesses along 12th Avenue Road and residential neighborhoods. According to the 2011-2015 American Community Survey, census tracts adjacent to the corridor have high levels of poverty - 45.7% and 28.8%. In Census tract 205.04 between Greenhurst and Amity, 9.2% of housing units do not have a vehicle available. The percentage is much higher for block groups around NNU directly adjacent to the corridor, where 25.7% of housing units do not have access to a vehicle.

The existing Holly Street is four lanes wide with sharp horizontal curves adjacent to NNU. The wide roadway width, relatively high vehicle speeds, and the lack of sight distance due to the horizontal curves combine to make Holly Street a barrier to pedestrians and bicyclists.

1.2 Goals
In addition to providing an important bike corridor, the proposed roadway reconfiguration aims to improve pedestrian safety and access and transit boarding operations. Slowing automobile traffic and reducing the number of automobile lanes will make it easier for pedestrians and bicyclists to cross the road to reach NNU. Additionally, sidewalk bulb-outs will increase the space available for transit boarding and reduce conflicts.

1.3 Cost
The estimated cost of the preferred alternative is roughly $270,000, which includes $50,000 for preliminary and final design/engineering.

1.4 Schedule
The City of Nampa would like to construct this project as soon as possible, but it is currently unfunded. Once funds can be identified and secured, design should take about 6 months, and construction should take another 6 months, including time to procure signal equipment. Purchasing right of way and/or easements may take another 6 months, if needed.

1.5 One Paragraph Summary for TIP
The intent of the project is to address vehicle, bicycle and pedestrian transportation safety issues along the corridor, and improve transit boarding operations. The preferred alternative includes a three-lane road section with bike lanes from Roosevelt Avenue to Colorado Avenue, a two-lane section with bike lanes and parking on one side from Colorado Avenue to Hawaii Avenue, bike boulevard pavement markings and signs along Roosevelt Avenue from Holly Street to 18th Avenue, marked crosswalks with lighting at Clark Avenue and Hawaii Avenue, bus bulb-outs, 260’ of sidewalk, and curve warning signs where appropriate. This project fills an important missing link to connect Nampa’s bicycle network.
Figure 1. Project Area
2 Project Description

2.1 Need for Project Development
Project development was needed to evaluate the Holly Avenue corridor (Roosevelt Avenue to Hawaii Avenue) Roadway Reconfiguration and examine the potential for reducing the four lane roadway section to three lanes. Roosevelt Avenue from Holly Street to 18th Avenue was also evaluated for a Bike Boulevard treatment. A complete corridor evaluation was required to determine the impact of the roadway reconfiguration on all modes of transportation in the area. Connections to nearby bicycle facilities were considered along with lighting, pavement markings, signing, Americans with Disabilities Act (ADA) compliant pedestrian ramps and pedestrian crossings to NNU. The Holly Avenue/Colorado Avenue intersection design is in progress and scheduled for construction in 2020.

2.2 Project Development Scope of Work
Lochner held stakeholder meetings, gathered traffic and crash data, and visited the site to establish existing conditions on the corridor. The network connectivity of the corridor was evaluated for local and regional significance. Lochner then presented alternatives for each of the three segments of the project, and identified preferred pedestrian crossing locations.

Each alternative was analyzed for traffic operations and potential safety benefits. The type of pedestrian crossing was identified using Nampa's approved matrix, adopted from the Ada County Highway District (ACHD). A planning level cost estimate was prepared for the preferred alternative.

Lochner also prepared an environmental scan and a public involvement plan for the design phase of the project.

2.3 Existing Conditions

2.3.1 Roadway
The project was evaluated in four segments to correspond with the varied roadways within the project area -- the North Segment, Main Segment, South Segment, and Roosevelt Avenue.

2.3.1.1 North Segment
Holly Street is five lanes wide (two lanes in each direction plus a center turn lane) from Roosevelt Avenue south to Lincoln Avenue (Figure 2). Holly Street tapers from five to four lanes between Lincoln Avenue and Sherman Avenue.

Figure 2. Holly Street, Roosevelt Ave to Sherman Ave (North Segment)
2.3.1.2 Main Segment
The four lane section continues south (Figure 3) from Sherman Avenue to the intersection with Colorado Avenue, where it tapers back out to five lanes to accommodate a left turn lane. In the late-nineties, Holly Street was realigned to go around NNU. As a result, the road that traffic follows changes names several times through this segment – from Holly Street to Sheridan Avenue, to Fern Street, to Bird Avenue, and back to Holly Street. For the purposes of this report, “Holly Street” refers to all these road segments collectively. No parking is allowed on Holly Street from Roosevelt Avenue to Colorado Avenue.

Figure 3. Holly Street, Sherman Ave to Colorado Ave (Main Segment)

2.3.1.3 South Segment
Immediately south of Colorado Avenue, Holly Street is three lanes wide (one lane in each direction with a left turn lane). No parking is allowed on this short segment. South of the intersection area the left turn lane striping is tapered away and the road becomes two wide lanes with on-street parking allowed south to Hawaii Avenue (Figure 4).
2.3.1.4 Roosevelt Avenue

This segment of Roosevelt Avenue is included to connect new bicycle improvements on Holly Street to an existing bike boulevard on 18th Avenue. Roosevelt Avenue immediately east of Holly Street is three lanes wide (one lane in each direction with a left turn lane). East of the intersection the roadway width tapers down and becomes two wide lanes with on-street parking allowed. This roadway configuration continues east to the project limit at 18th Avenue, and beyond.

2.3.2 Land Use

Land use along Holly Street is primarily single-family residential, with notable exceptions being NNU and businesses at intersections to the north. There is a strip mall at Holly Street and Roosevelt Ave, and there is some multi-family residential on the corridor as well. Skyview High School is south of the project limits off of Greenhurst Road.
2.3.3 Safety/Crash History
Crash data was obtained from the LHTAC website, with 2011-2015 as the most recent five years of available crash data for the project area, for all crash types and transportation modes. Of the 95 total crashes within the project limits, there were no fatalities nor any pedestrian or bicycle crashes.

Table 1. 2011-2015 Crash Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Crashes</td>
<td>95</td>
</tr>
<tr>
<td>Property Damage Crashes</td>
<td>52</td>
</tr>
<tr>
<td>Injury Crashes</td>
<td>43</td>
</tr>
<tr>
<td>Fatal Crashes</td>
<td>0</td>
</tr>
<tr>
<td>Percent Injury and Fatal Crashes</td>
<td>45%</td>
</tr>
<tr>
<td>Pedestrian or Bicycle Crashes</td>
<td>0</td>
</tr>
</tbody>
</table>

Crash types are summarized in Figure 6. The majority of the crashes are intersection-related. There is also a relatively high percentage of fixed object crashes, due to the horizontal curves.

![Figure 6. Crash Type (2011-2015)](image)

2.3.4 Traffic
Traffic data was obtained from the City of Nampa. Traffic along Holly Street between Roosevelt Avenue and Colorado Avenue ranges from approximately 800 to 1,000 vehicles (total of both directions) in the PM peak hour. Traffic volumes are higher in the PM peak than in the AM peak.

Based on Synchro analysis of the existing 4-way stop controlled intersections using Highway Capacity Manual (HCM) methodology, the Holly & Roosevelt intersection currently operates at Level of Service (LOS) B, and Holly & Colorado operates at LOS D.
2.3.5 Bike/Ped

Holly Street currently has attached five foot wide sidewalks on both sides for its entire length within the project limits. Rolled curbs on Holly Street where the horizontal curves are located contribute to pedestrians feeling less safe on this segment. Roosevelt Ave between Holly Street and 18th Avenue also has five foot wide sidewalks, attached on the north and separated by a planter strip on the south. There is a short (approximately 260 feet long) segment of missing sidewalk just east of Holly Street on the north side. Curb ramps are not currently ADA compliant.

Holly Street and Roosevelt Avenue currently have no bike lanes within the project limits. Immediately south of Hawaii Avenue, Holly Street has bike lanes south to Maine Avenue. The name of the street also transitions to Sunny Ridge Road in this segment.

2.3.6 Transit

Valley Regional Transit (VRT) currently operates Route 51 on the corridor, with hourly service between 6:30 AM and 6:30 PM weekdays. The route loops around NNU, travelling southbound on 12th Avenue Road and northbound along Holly Street. There are five fixed stop locations along Holly Street between Hawaii Avenue and Roosevelt Avenue.

VRT plans to reconfigure the route to have two-directional traffic along Holly Street within the project limits, and more frequent service at peak times.

2.3.7 Utilities and Irrigation

No above ground utilities or irrigation structures are evident along Holly Street between Roosevelt Avenue and Amity Avenue. At Amity Avenue, overhead power distribution and telecom lines cross Fern Street. Additional distribution lines branch south at this intersection, and continue south and west along Fern Street and Bird Avenue, crossing in two locations between Amity Avenue and Colorado Avenue. South of Colorado Avenue, overhead power and telecom runs down the east side of Holly Street with several service crossings to the west side of the street.

Additional utilities under the street and/or sidewalks include underground power, gas, communication, water, and sewer. There may also be underground irrigation water running along Holly Street.

The Elijah Drain crosses the Holly Street and Colorado Avenue intersection diagonally from southeast to northwest.

2.4 Regional/Network Connections

The 16th Avenue/Holly Street/Sunny Ridge Road corridor serves businesses and neighborhoods along its length. It also serves as an alternative route to the 11th Avenue/12th Avenue Road/Highway 45 corridor. 16th Avenue connects to Garrity Boulevard at its northern terminus. Sunny Ridge Road terminates at Lewis Lane to the south. Since the corridor terminates at both ends, it does not provide regional connections. It is, however, an important part of the Nampa street network.

Bicycle community representatives have indicated that the Holly Street corridor is an important route for recreational cyclists to access Lake Lowell. The corridor does not appear to be a bike commute route based on traffic counts, but that may change if bicycle lanes are installed.
2.5 Comprehensive Purpose and Need Description for Grant Narrative

2.5.1 Benefits Expected
This project is expected to complete missing segments of the bicycle and pedestrian networks as identified in the 2011 *City of Nampa Bicycle and Pedestrian Master Plan*, and improve transit boarding operations. Ancillary benefits of the project include removing a barrier to pedestrian travel by reducing the number of lanes to cross and adding pedestrian crossing treatments, and traffic calming. According to the FHWA Road Diet Informational Guide, road diet projects are likely to decrease 85th percentile and average speeds by 3 to 5 mph.

2.5.2 Unique Community Interest
This project has become a priority for Nampa due to the relatively high levels of poverty and low levels of vehicle availability in this neighborhood. According to the 2011-2015 American Community Survey, census tracts adjacent to the corridor have high levels of poverty 45.7% and 28.8%. In Census tract 205.04 between Greenhurst and Amity (**Figure 7**), 9.2% of housing units do not have a vehicle available. The percentage is much higher for block groups around NNU directly adjacent to the corridor, where 25.7% of housing units do not have access to a vehicle.

2.5.3 Strategic Goals and Performance Measures
The proposed project aims to improve the following *Communities in Motion 2040* (CIM) performance measures:

![Figure 7. Census Boundaries](image)
• Transportation/Safety (CIM Performance Measures 15 and 21)
• Transportation/System Reliability (CIM Performance Measure 29)
• Health (CIM Performance Measure 46)

The measurable variables that quantify these measures include:

• Automobile crashes and injuries
• Bikeways per roadway mile
• Connectivity to schools

The strategic goals for the project are:

• Reduce automobile crash rates
• Add bikeway miles
• Improve bicycle and pedestrian connectivity

2.6 Consistency with Existing Plans and Documents

Bike lanes within the project limits are ranked as a high priority project in Nampa’s 2011 Bicycle & Pedestrian Master Plan. They are also listed as a Community Identified Need in the 2012 Transportation Master Plan. Recommendations in the 2009 University District Neighborhood Plan include reducing vehicle speeds, developing pedestrian-friendly infrastructure, and developing bicycle-friendly infrastructure.

3 Alternatives

3.1 Main Holly Street Segment (Sherman Avenue to Colorado Avenue)

3.1.1 Preferred Alternative: Three-Lane Section

Figure 8 shows Alternative A, the preferred alternative, which reconfigures the existing 4-lane section to 3 lanes with conventional bike lanes and a two way left turn lane or median. A raised median may be used in place of a two way left turn lane where turn restriction is desired and/or to prevent vehicles from passing busses during loading.

Advantages: Traffic calming, bicycle lanes, safer pedestrian crossings, crash reduction, bulb-outs for transit boarding, reduced level of stress for pedestrian travel

Disadvantages: Lower vehicle capacity
3.1.2 Other Alternatives Considered: Four-Lane Section

Figure 9 shows Alternative B, which keeps the existing four-lane section but narrows the lanes to allow for the addition of bike lanes.

Advantages: Higher vehicle capacity

Disadvantages: Higher speeds, barrier to pedestrian crossing, no reduction in crashes
3.2 Holly Street North Segment (Roosevelt Avenue to Sherman Avenue)

3.2.1 Preferred Alternative: Three-Lane Section with Shoulders

This section would extend Alternative A (the preferred alternative) to the north, except that there is already a two way left turn lane on this segment. To account for the additional width on this segment, shoulders should be painted to the outside of the bike lanes. Shoulders would be approximately 5 feet wide. This alternative would have the same advantages and disadvantages as the three-lane section would for the main segment, as described above.

3.2.2 Other Alternatives Considered:

3.2.2.1 Three-Lane Section with Park Strip

Park strips could be installed outside the bike lanes instead of shoulders.

Advantages: Provide snow storage in winter
Disadvantages: This option is the most expensive, since it requires reconstruction of the curb and gutter, drainage modifications, and excavation of some of the existing outside travel lane. Maintenance of the park strip is also a concern, but a low maintenance treatment such as river rock could be used.

3.2.2.2 Five-Lane Section
This section would extend Alternative B to the north, except that there is a two way left turn lane on this segment. To keep the turn lane and add bike lanes on this segment, through lane widths would be reduced to 11 feet and the turn lane reduced to 10 ½ feet wide. This alternative would have the same advantages and disadvantages as the four-lane section would for the main segment, as described above.

3.3 Holly Street South Segment (Colorado Avenue to Hawaii Avenue)

3.3.1 Preferred Alternative: Two-Lane Section
This preferred option retains parking on one side of the street and adds bike lanes, but does not add a two-way left turn lane. This option can be used instead of or in conjunction with the three-lane option for this segment. For example, Sunny Ridge Road just south of Hawaii Avenue transitions from 3 lanes to 2, and back to 3 again. Something similar could be done for this segment if desired by neighborhood residents.

Advantages: Adds bike lanes while retaining parking on one side of the street

Disadvantages: Removes parking on one side of the street, does not add a center turn lane

3.3.2 Other Alternatives Considered: Three-Lane Section
This section would extend Alternative A to the south, except that the lanes would be narrower on this segment. On-street parking would be removed from both sides of the street to make room for a two-way left turn lane and bike lanes. Through lanes would be 12 feet wide with a center turn lane approximately 13 ½ feet wide.

Advantages: Adds bike lanes and center turn lane

Disadvantages: Removes parking from both sides of the street

3.4 Bike Boulevard on Roosevelt Avenue
Roosevelt Avenue is identified as a proposed bicycle boulevard on the Proposed Bikeway and Off-Street Pathway Network map within Nampa’s 2011 Bicycle and Pedestrian Master Plan, but the application level is not identified. The most basic application level consists of pavement markings and signage to designate the facility. Higher application levels add wayfinding signage and directional pavement markings, followed by various levels of traffic calming to help equalize bicycle and vehicle speeds.

Engineering judgement indicates that vehicle volumes and speeds on this segment of Roosevelt Avenue are low enough that most adult cyclists would feel comfortable using this route most of the time, except possibly during peak travel times. A speed study could be performed to determine if additional traffic calming measures should be considered. Otherwise, a Level 2 bicycle boulevard, as described in the 2011 Bicycle and Pedestrian Master Plan, is recommended to provide the wayfinding guidance to direct cyclists between the preferred routes of Holly Street and 18th Avenue. It is also recommended that the

LOCHNER
missing segment of sidewalk on the north side of Roosevelt Avenue near the Holly Street intersection be constructed as part of this project (Figure 10).

![Figure 10. Missing Sidewalk on Roosevelt Avenue](image)

3.5 Pedestrian Crossing Locations

As identified in the project kickoff meeting, a pedestrian crossing is planned for the intersection of Fern Street and Clark Avenue. NNU plans to relocate the main entrance to campus to Colorado Avenue, west of Holly Street. Even if the main entrance is no longer at Clark Avenue, a pedestrian crossing there still makes sense. It is more than ¼ mile from the nearest crossing at Colorado Avenue, and it is on the straight segment of Fern Street with adequate stopping sight distances.

The project team also noted that there used to be a crossing at Hawaii Avenue, and identified that as a second needed crossing location.

3.5.1 Pedestrian Hybrid Beacon vs. Flashing Beacon

Nampa has adopted ACHD’s Pedestrian Crossing Treatments evaluation matrix, which was based on national research with regard to pedestrian crossings. Based on the matrix, the Clark Avenue pedestrian crossing location is recommended for a Level 2 crossing treatment, and the Hawaii Avenue crossing is recommended for a Level 1 treatment. Level 1 treatments include marked crosswalks with appropriate signs, and advance signs where sight distance is limited. Level 2 treatments include all Level 1 elements, plus one of the following:
• Side mounted flashing beacon
• Overhead flashing beacon

A Level 1 crossing treatment is recommended at Hawaii Avenue, and a Level 2 overhead flashing beacon treatment is recommended at Clark Avenue. Proposed pedestrian crossing locations are shown in Figure 11.

3.6 Traffic Analysis of Three-Lane Section
With a three-lane section south of Roosevelt Avenue, the outer lane of the north leg of the Holly & Roosevelt intersection must become a right turn only lane. This reduces LOS to D in the peak hour, which is still acceptable.

A traffic signal is currently being designed for the intersection of Holly & Colorado. With only a three-lane section on the north leg of the intersection the LOS is acceptable, but queues are a concern. If the three lanes are reduced to 11 feet wide at the intersection, a 10-foot wide right turn lane and bike lanes could be provided without widening the existing road section. Truck volumes are low on Holly Street, so the use of a 10 foot width should not be an operational concern. Retaining the right turn only lane eliminates the queuing concern and allows the intersection to operate at LOS B. Traffic analysis results are included in this document as Attachment A.

3.7 Curve Warning Signs
The posted speed limit on Holly Street is 35 miles per hour, but the radii of the horizontal curves, combined with the normal crown cross slopes that are maintained through the curves, equate to a 25-30 MPH design speed. There are some curve warning signs in place, but some appear to be missing. It is recommended to add curve warning signs per Manual on Uniform Traffic Control Devices (MUTCD) guidance.
3.8 Transit

Valley Regional Transit is planning Premium Service for the Holly Street corridor. Premium Service includes:

- More frequent service
- Potential for future transit only lanes
- Bulb-outs at stops

Bulb-outs would extend into the bike lanes, and bicycle traffic would be routed around the boarding area and across the bulb-out using ramps and striping. An example of this type of bulb-out is shown in Figure 12.

VRT plans to stop vehicles in the travel lane for boarding. With the Preferred Alternative, the single travel lane would be temporarily blocked. According to VRT, boarding in this area typically takes 25 seconds or less. Given the short stoppage time and relatively low volumes on the corridor, transit stops are not anticipated to generate excessive delays or queues. Vehicles attempting to pass a stopped bus using the center turn lane is a potential safety concern. Raised medians could be installed at bus stop locations to prevent passing. Bulb-outs are recommended for stops at Sherman Avenue, Clark Avenue, and Colorado Avenue. Bulb-outs would be located on both sides of Holly Street, for a total of six (Figure 13).
3.9 Expected Safety Benefits
According to FHWA’s web site, converting a four-lane, undivided roadway to three lanes typically results in a crash reduction of 19 to 47 percent. Installing bike lanes on the existing four-lane section may also result in safety benefits. A recent study on the Crash Modification Factors Clearinghouse web site reported a 23 percent reduction in vehicle/bicycle crashes by installing bike lanes.

3.10 Signal and Lighting Improvements
No traffic signal improvements are included as part of this project, but there is a planned traffic signal within the project limits, at Holly Street and Colorado Avenue, as noted above. The University District Neighborhood Plan identified lighting improvements as a way to make the district “identifiable and unique,” but the document also notes that existing lighting is consistent throughout the corridor. Due to a relatively low expected benefit to cost ratio, lighting improvements for the corridor as a whole are not recommended as part of this project. One exception would be at the new pedestrian crossings. Light levels at the crossings should be evaluated as part of the final design for safety. It is anticipated that one or two luminaires would be added at each pedestrian crossing.

4 Right Of Way
Nampa currently owns or holds easements for the entire Holly Street corridor. This project would not require any additional right of way, with the possible exception of small areas at intersection corners as may be needed to accommodate an electrical service cabinet or a signal pole. Final right of way needs determination would be completed during final design.

5 Environmental Scan Summary
The following is a summary of project impacts and required mitigation and/or recommended project commitments. The full environmental scan is included in this document as Attachment B.
5.1 Impacts
- The project occurs within existing and disturbed right-of-way. Impacts to archaeological resources are unlikely.
- Likelihood of impacts to threatened and endangered species, and migratory birds in the project area is minimal.
- No water resources would be impacted by project activities.
- The project will impact less than 1 acre of land and therefore does not need to comply with IDEQ NPDES requirements.
- Two leaking underground tanks were identified along Holly Street. One site has been closed, the other has been remediated in place. These sites are located outside of the roadway right-of-way and do not pose a threat to public health or to the proposed project.

5.2 Mitigation/Project Commitments
Cultural Resources: If the proposed actions change throughout the course of this project, a qualified archaeologist or architectural historian will need to be consulted to analyze the potential impacts to cultural resources.

6 Project Stakeholders
During scoping for this study, a list of stakeholders was developed. The following is the list of stakeholders who have an interest in the project and have participated in this study:
- City of Nampa
- Safe Routes to School
- Northwest Nazarene University
- Nampa Bike/Ped Advisory Council
- Valley Regional Transit
- COMPASS

7 Public Involvement Plan
In addition to the stakeholders identified above, a public involvement plan has been developed to identify other potentially interested parties, and to present strategies for future outreach. The public involvement plan is included in this document as Attachment C.

8 Project Schedule and Milestones

<table>
<thead>
<tr>
<th>Phase II Funding Application to COMPASS</th>
<th>January 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding sources identified</td>
<td>unknown</td>
</tr>
<tr>
<td>Formal approval by Nampa and COMPASS</td>
<td>unknown</td>
</tr>
<tr>
<td>Preliminary design & survey</td>
<td>2 months</td>
</tr>
<tr>
<td>Concept Report</td>
<td>1 week</td>
</tr>
<tr>
<td>Environmental Evaluation approval</td>
<td>3-4 months</td>
</tr>
<tr>
<td>Easements</td>
<td>6 months</td>
</tr>
<tr>
<td>Final Design / PS&E</td>
<td>1 month</td>
</tr>
</tbody>
</table>
9 Cost Estimate

A planning level cost estimate was developed for the Preferred Alternative, included in this document as Attachment D. The estimate includes costs associated with restriping, and adding pedestrian crossings, sidewalk, and curve warning signage. The estimated cost of the preferred alternative is roughly $270,000, which includes $50,000 for preliminary and final design/engineering.

10 Potential Funding Sources

10.1 Federal Funding Sources
- Safe Routes to School
- Surface Transportation Program
- Highway Safety Improvement Program
- Recreational Trails Program
- Community Development Block Grants
- Federal Transit Administration 5307 funds

10.2 State Funding
- Local Highway Safety Improvement Program
- Transportation Alternatives Program - Urban
- Surface Transportation Program - Urban

10.3 Local/Other Funding
- City of Nampa
- NNU
Attachment A Traffic Analysis
Intersection

Intersection Delay, s/veh: 14.4
Intersection LOS: B

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>32</td>
<td>23</td>
<td>33</td>
<td>7</td>
<td>19</td>
<td>30</td>
<td>17</td>
<td>329</td>
<td>11</td>
<td>18</td>
<td>540</td>
<td>33</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>32</td>
<td>23</td>
<td>33</td>
<td>7</td>
<td>19</td>
<td>30</td>
<td>17</td>
<td>329</td>
<td>11</td>
<td>18</td>
<td>540</td>
<td>33</td>
</tr>
</tbody>
</table>

Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	35	25	36	8	21	33	18	358	11	18	540	33

| Number of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |

Approach

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>WB</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>11.2</td>
<td>11</td>
<td>13.1</td>
<td>16</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>NBLn3</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>SBLn1</th>
<th>SBLn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>100%</td>
<td>91%</td>
<td>0%</td>
<td>41%</td>
<td>0%</td>
<td>39%</td>
<td>94%</td>
<td>89%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>0%</td>
<td>9%</td>
<td>0%</td>
<td>59%</td>
<td>0%</td>
<td>61%</td>
<td>0%</td>
<td>11%</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>17</td>
<td>219</td>
<td>121</td>
<td>32</td>
<td>56</td>
<td>7</td>
<td>49</td>
<td>288</td>
<td>303</td>
</tr>
<tr>
<td>LT Vol</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>219</td>
<td>110</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>19</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>18</td>
<td>238</td>
<td>131</td>
<td>35</td>
<td>61</td>
<td>8</td>
<td>53</td>
<td>313</td>
<td>329</td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.036</td>
<td>0.436</td>
<td>0.238</td>
<td>0.078</td>
<td>0.121</td>
<td>0.017</td>
<td>0.108</td>
<td>0.536</td>
<td>0.554</td>
</tr>
<tr>
<td>Departure Headway (Hd)</td>
<td>7.089</td>
<td>6.583</td>
<td>6.519</td>
<td>8.098</td>
<td>7.171</td>
<td>8.222</td>
<td>7.278</td>
<td>6.159</td>
<td>6.051</td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cap</td>
<td>503</td>
<td>546</td>
<td>548</td>
<td>440</td>
<td>497</td>
<td>433</td>
<td>489</td>
<td>585</td>
<td>596</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.036</td>
<td>0.436</td>
<td>0.239</td>
<td>0.08</td>
<td>0.123</td>
<td>0.018</td>
<td>0.108</td>
<td>0.535</td>
<td>0.552</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>10.1</td>
<td>14.4</td>
<td>11.3</td>
<td>11.6</td>
<td>11</td>
<td>11.2</td>
<td>11</td>
<td>15.9</td>
<td>16.1</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>0.1</td>
<td>2.2</td>
<td>0.9</td>
<td>0.3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Intersection</td>
<td>Intersection Delay, s/veh</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>60</td>
<td>194</td>
<td>44</td>
<td>109</td>
<td>323</td>
<td>6</td>
<td>57</td>
<td>150</td>
<td>83</td>
<td>10</td>
<td>341</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>60</td>
<td>194</td>
<td>44</td>
<td>109</td>
<td>323</td>
<td>6</td>
<td>57</td>
<td>150</td>
<td>83</td>
<td>10</td>
<td>341</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>65</td>
<td>211</td>
<td>48</td>
<td>118</td>
<td>351</td>
<td>7</td>
<td>62</td>
<td>163</td>
<td>90</td>
<td>11</td>
<td>371</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Approach

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>17</td>
<td>20.7</td>
<td>24.1</td>
<td>45.3</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>

Lane

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>EBLn3</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>WBLn3</th>
<th>SBLn1</th>
<th>SBLn2</th>
<th>SBLn3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>64%</td>
<td>0%</td>
<td>100%</td>
<td>60%</td>
<td>0%</td>
<td>100%</td>
<td>95%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>36%</td>
<td>0%</td>
<td>0%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>57</td>
<td>233</td>
<td>60</td>
<td>129</td>
<td>109</td>
<td>109</td>
<td>215</td>
<td>114</td>
<td>10</td>
<td>341</td>
<td>134</td>
</tr>
<tr>
<td>LT Vol</td>
<td>57</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>129</td>
<td>65</td>
<td>0</td>
<td>215</td>
<td>108</td>
<td>0</td>
<td>341</td>
<td>0</td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>62</td>
<td>253</td>
<td>65</td>
<td>141</td>
<td>118</td>
<td>118</td>
<td>234</td>
<td>124</td>
<td>11</td>
<td>371</td>
<td>146</td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.168</td>
<td>0.636</td>
<td>0.185</td>
<td>0.379</td>
<td>0.308</td>
<td>0.32</td>
<td>0.599</td>
<td>0.315</td>
<td>0.029</td>
<td>0.923</td>
<td>0.334</td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
</tr>
<tr>
<td>Cap</td>
<td>366</td>
<td>400</td>
<td>351</td>
<td>370</td>
<td>382</td>
<td>368</td>
<td>391</td>
<td>390</td>
<td>377</td>
<td>404</td>
<td>434</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.169</td>
<td>0.632</td>
<td>0.185</td>
<td>0.381</td>
<td>0.309</td>
<td>0.321</td>
<td>0.598</td>
<td>0.318</td>
<td>0.029</td>
<td>0.918</td>
<td>0.336</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>14.5</td>
<td>26.4</td>
<td>15.3</td>
<td>18.3</td>
<td>16.3</td>
<td>17.1</td>
<td>24.9</td>
<td>16.2</td>
<td>12.5</td>
<td>58.1</td>
<td>15.1</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>0.6</td>
<td>4.2</td>
<td>0.7</td>
<td>1.7</td>
<td>1.3</td>
<td>1.4</td>
<td>3.8</td>
<td>1.3</td>
<td>0.1</td>
<td>10</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Intersection

<table>
<thead>
<tr>
<th>Intersection Delay, s/veh</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection LOS</td>
<td>D</td>
</tr>
</tbody>
</table>

Movement

| Traffic Vol, veh/h | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Future Vol, veh/h | 32 | 23 | 33 | 7 | 19 | 30 | 17 | 329 | 11 | 18 | 540 | 33 |
| Peak Hour Factor | 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92|
| Heavy Vehicles, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 35 | 25 | 36 | 8 | 21 | 33 | 18 | 358 | 12 | 20 | 587 | 36 |
| Number of Lanes | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |

Approach

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>10.9</td>
<td>10.6</td>
<td>16.4</td>
<td>42.9</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>

Lane

<table>
<thead>
<tr>
<th>Vol Left, %</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>SBLn1</th>
<th>SBLn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>97%</td>
<td>0%</td>
<td>41%</td>
<td>0%</td>
<td>39%</td>
<td>97%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>59%</td>
<td>0%</td>
<td>61%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>17</td>
<td>340</td>
<td>32</td>
<td>56</td>
<td>7</td>
<td>49</td>
<td>558</td>
<td>33</td>
</tr>
<tr>
<td>LT Vol</td>
<td>17</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>329</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>19</td>
<td>540</td>
<td>0</td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>18</td>
<td>370</td>
<td>35</td>
<td>61</td>
<td>8</td>
<td>53</td>
<td>607</td>
<td>36</td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.032</td>
<td>0.595</td>
<td>0.076</td>
<td>0.117</td>
<td>0.017</td>
<td>0.104</td>
<td>0.938</td>
<td>0.048</td>
</tr>
<tr>
<td>Departure Headway (Hd)</td>
<td>6.327</td>
<td>5.798</td>
<td>7.847</td>
<td>6.911</td>
<td>7.961</td>
<td>7.008</td>
<td>5.57</td>
<td>4.847</td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cap</td>
<td>565</td>
<td>621</td>
<td>456</td>
<td>517</td>
<td>449</td>
<td>510</td>
<td>649</td>
<td>738</td>
</tr>
<tr>
<td>Service Time</td>
<td>4.071</td>
<td>3.541</td>
<td>5.61</td>
<td>4.674</td>
<td>5.728</td>
<td>4.774</td>
<td>3.305</td>
<td>2.582</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.032</td>
<td>0.596</td>
<td>0.077</td>
<td>0.118</td>
<td>0.018</td>
<td>0.104</td>
<td>0.935</td>
<td>0.049</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>9.3</td>
<td>16.8</td>
<td>11.3</td>
<td>10.6</td>
<td>10.9</td>
<td>10.6</td>
<td>45</td>
<td>7.8</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>0.1</td>
<td>3.9</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>12.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Timings

8: Holly St & Colorado Ave

11/07/2017

<table>
<thead>
<tr>
<th>Lane Group</th>
<th>EBL</th>
<th>EBT</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBT</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (vph)</td>
<td>60</td>
<td>194</td>
<td>109</td>
<td>323</td>
<td>57</td>
<td>150</td>
<td>10</td>
<td>341</td>
<td>134</td>
</tr>
<tr>
<td>Future Volume (vph)</td>
<td>60</td>
<td>194</td>
<td>109</td>
<td>323</td>
<td>57</td>
<td>150</td>
<td>10</td>
<td>341</td>
<td>134</td>
</tr>
<tr>
<td>Turn Type</td>
<td>pm+pt</td>
<td>NA</td>
<td>pm+pt</td>
<td>NA</td>
<td>pm+pt</td>
<td>NA</td>
<td>Perm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected Phases</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Phase</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Switch Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Initial (s)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Minimum Split (s)</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>Total Split (s)</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>9.5</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>Total Split (%)</td>
<td>14.6%</td>
<td>35.4%</td>
<td>14.6%</td>
<td>35.4%</td>
<td>14.6%</td>
<td>35.4%</td>
<td>14.6%</td>
<td>35.4%</td>
<td>35.4%</td>
</tr>
<tr>
<td>Yellow Time (s)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>All-Red Time (s)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lost Time Adjust (s)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Lost Time (s)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Lead/Lag</td>
<td>Lead</td>
<td>Lag</td>
<td>Lead</td>
<td>Lag</td>
<td>Lead</td>
<td>Lag</td>
<td>Lead</td>
<td>Lag</td>
<td>Lag</td>
</tr>
<tr>
<td>Lead-Lag Optimize?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Recall Mode</td>
<td>None</td>
<td>Min</td>
<td>None</td>
<td>Min</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Act Effct Green (s)</td>
<td>14.4</td>
<td>10.6</td>
<td>15.5</td>
<td>13.1</td>
<td>18.6</td>
<td>17.9</td>
<td>17.1</td>
<td>14.7</td>
<td>14.7</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.30</td>
<td>0.22</td>
<td>0.33</td>
<td>0.28</td>
<td>0.39</td>
<td>0.38</td>
<td>0.36</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>v/c Ratio</td>
<td>0.16</td>
<td>0.32</td>
<td>0.28</td>
<td>0.37</td>
<td>0.16</td>
<td>0.37</td>
<td>0.02</td>
<td>0.64</td>
<td>0.24</td>
</tr>
<tr>
<td>Control Delay</td>
<td>12.7</td>
<td>16.4</td>
<td>13.8</td>
<td>18.3</td>
<td>10.0</td>
<td>12.1</td>
<td>9.0</td>
<td>22.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Queue Delay</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Delay</td>
<td>12.7</td>
<td>16.4</td>
<td>13.8</td>
<td>18.3</td>
<td>10.0</td>
<td>12.1</td>
<td>9.0</td>
<td>22.2</td>
<td>3.4</td>
</tr>
<tr>
<td>LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Approach Delay</td>
<td>15.7</td>
<td>17.1</td>
<td>11.7</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 47.3

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 15.7

Intersection LOS: B

Intersection Capacity Utilization 51.0%

ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 8: Holly St & Colorado Ave

![Diagram of traffic phases and splits](image-url)
Attachment B Environmental Scan
Dear Kathy Parker,

I am writing to discuss the Environmental Evaluation of the Holly Street/ North West Nazarene University Roadway Reconfiguration project. I am Jason Green, a Senior Planner at Lochner, Inc., and I am in charge of preparing this evaluation.

Attachments

- Appendix A: Project Study Map
- Appendix B: USFWS Biological Scan
- Appendix C: National Inventory of Wetlands Map
- Appendix D: EPA and IDEQ Hazardous Materials Data

Purpose

The purpose of this Environmental Evaluation is to identify the potential environmental resources that may be affected by the proposed project, any proposed mitigation or project commitments, and any associated permits that may be required; only notable resources present in the project evaluation area are discussed. Lochner utilized a combination of desktop reconnaissance and coordination with state and federal agencies, as appropriate to prepare this Environmental Evaluation.

Need

The project is needed because cyclists use the corridor to access Northwest Nazarene University (NNU), the Nampa Recreation center, Liberty Park, services along 12th Avenue Road and residential neighborhoods. The existing Holly Street between Roosevelt Avenue and Colorado Avenue is four lanes wide with sharp horizontal curves adjacent to NNU. Holly Street narrows to two lanes wide between Colorado Avenue and Hawaii Avenue. The roadway width, relatively high vehicle speeds, and the lack of sight distance due to the horizontal curves combine to make Holly Street a barrier to pedestrians and a safety hazard to cyclists.

Project Description

The proposed project will occur along the Holly Street Corridor (Roosevelt Avenue to Hawaii Avenue). The corridor provides an alternative north-south route to 12th Avenue Road.

The proposed project includes reduction of Holly Street from four lanes to three lanes to accommodate bike lanes and center turn lanes near NNU. The project will remove on-street parking along Holly Street from Colorado Avenue to Hawaii Avenue to connect bicycle facilities along the entire corridor (Roosevelt Avenue to Greenhurst Avenue). The speed limit on Holly Street is currently 35 miles per hour (mph). Curve warning signs with advisory speeds of 25 mph are planned for the horizontal curves. A flashing beacon pedestrian crossing will be installed at the intersection of Fern Street and Clark Avenue.

Best regards,

Jason Green, Senior Planner
Lochner, Inc.
portion of Roosevelt Street (between Holly Street and 18th Avenue) will be improved to include bicycle
signs and pavement markings, see Appendix A.

Cultural Resources
All permanent and temporary impacts will be on previously disturbed land within the existing right-of-
way (ROW). As a result, a cultural resource analysis was not necessary.

Threatened and Endangered Species and Wildlife
Lochner completed a biological scan for the project.

Threatened and Endangered Species
Proposed, candidate, threatened, and endangered species are protected under the Endangered Species
Act (ESA) of 1973 and administered by the U.S. Fish and Wildlife Service (USFWS). Background data was
pulled for the project evaluation area using the Information for Planning and Conservation (IPaC)
website from the USFWS, see Appendix B. Species identified include the slickspot peppergrass (*Lepidium*
papilliferum) which is listed as threatened under the ESA. The project evaluation area does not occur
within crucial habitat and the likelihood of the presence of the species is minimal (USFWS 2017a).

Migratory Birds
Migratory birds are protected by the Migratory Bird Treaty Act of 1918 and the Bald and Golden Eagle
Projection Act of 1940. Any activity that results in the “take” of migratory birds or eagles is prohibited
unless authorized by the USFWS. There are no provisions for allowing the “take” of migratory birds that
are unintentionally killed or injured. Any person or organization who plans or conducts activities that
may result in the “take” of migratory birds is responsible for complying with the appropriate regulations
and implementing appropriate conservation measures. However, the project is within an
urban/residential area, and will be constructed within the existing developed right-of-way. Review of
the USFWS eBird database indicated that there have been no sightings of any of the migratory bird
species (for any years) within the project evaluation area (USFWS, 2017b). Therefore, the project area
lacks suitable habitat, and the likelihood of take of migratory birds, including eagles, is minimal.

Water Resources
National Wetlands Inventory (NWI) data was accessed to determine if any wetlands and waters of the
U.S. are located within the study area, see Appendix C. One water feature is located near the project
area:

- Elijah Drain: Crosses under the south and west arms of the Colorado Avenue and Holly Street
 intersection. This feature consists of a Riverine System that is contained within an artificially
 created channel (2017c).

Because roadway improvements will occur within the existing right-of-way, impacts to this water
feature are not likely.

Hazardous Materials
The EPA EnviroMapper and Idaho Department of Environmental Quality (IDEQ) Waste Management and
Remediation Facility Mapper were used to access information about environmental activities that may
affect air, water, and land anywhere within the project evaluation area. Results indicate that five
locations are within approximately 600 to 900 feet of the proposed project. These facilities are located
outside of the roadway right-of-way, therefore no impacts are anticipated from the proposed project.
The location are shown in Appendix D.

<table>
<thead>
<tr>
<th>Name</th>
<th>Site Address</th>
<th>Reference Site ID</th>
<th>IDEQ Waste Remediation Program</th>
<th>IDEQ Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holly Service Station</td>
<td>103 Holly Street</td>
<td>3-140122</td>
<td>UST/LUST</td>
<td>A.E. Voyles (no longer employed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Keith Dyarmett (208) 373-0442</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>keith.dyarmett@deq.idaho.gov</td>
</tr>
<tr>
<td>Stinker Store #44</td>
<td>224 Holly Street</td>
<td>3-140149</td>
<td>UST/LUST</td>
<td>Christopher Bowe (208) 373-0550</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>christopher.bowe@deq.idaho.gov</td>
</tr>
</tbody>
</table>

Source: Source: Environmental Protection Agency’s EnviroMapper
http://www.epa.gov/emeefdata/eme4ef.home
IDEQ Interactive Map https://idaho.terradex.com/

Conclusion
The following is a summary of project impacts and required mitigation and/or recommended project
commitments.

Impacts
- The project occurs within existing and disturbed right-of-way. Impacts to archaeological
resources are unlikely.
- Likelihood of impacts to threatened and endangered species, and migratory birds in the project
area is minimal.
- No water resources would be impacted by project activities.
- The project will impact less than 1 acre of land and therefore does not need to comply with
IDEQ NPDES requirements.
- Two leaking underground tanks were identified along Holly Street. One site has been closed, the
other has been remediated in place. These sites are located outside of the roadway right-of-way
and do not pose a threat to public health or to the proposed project.

Mitigation/Project Commitments
- Cultural Resources: If the proposed actions change throughout the course of this project, a
qualified archaeologist or architectural historian will need to be consulted to analyze the
potential impacts to cultural resources.

References

[USFWS] United States Fish and Wildlife Service

2017b eBird.org inventory for Environmental Evaluation area. Accessed by Dana Holmes on November 30 2017

Appendix A
Project Study Map
Appendix B
USFWS Biological Scan
IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service’s (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location
Canyon County, Idaho

Local office
Idaho Fish And Wildlife Office

📞 (208) 378-5243
креп (208) 378-5262

1387 South Vinnell Way, Suite 368
Boise, ID 83709-1657
Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act requires Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

1. Draw the project location and click CONTINUE.
2. Click DEFINE PROJECT.
3. Log in (if directed to do so).
4. Provide a name and description for your project.
5. Click REQUEST SPECIES LIST.

Listed species are managed by the Ecological Services Program of the U.S. Fish and Wildlife Service.

1. Species listed under the Endangered Species Act are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the listing status page for more information.

The following species are potentially affected by activities in this location:

Flowering Plants

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slickspot Peppergrass</td>
<td>Threatened</td>
</tr>
</tbody>
</table>

There is proposed critical habitat for this species. Your location is outside the critical habitat.

https://ecos.fws.gov/ecp/species/4027

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act.

Any activity that results in the take (to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct) of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service. There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured. Any person or organization who plans or conducts activities that may result in the take of species listed under the Endangered Species Act are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the listing status page for more information.

There is only a listing status for more information.

2. The Bald and Golden Eagle Protection Act of 1940.
3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

The birds listed below are USFWS Birds of Conservation Concern that might be affected by activities in this location. The list does not contain every bird you may find in this location, nor is it guaranteed that all of the birds on the list will be found on or near this location. To get a better idea of the specific locations where certain species have been reported and their level of occurrence, please refer to resources such as the E-bird data mapping tool (year-round bird sightings by birders and the general public) and Breeding Bird Survey (relative abundance maps for breeding birds). Although it is important to try to avoid and minimize impacts to all birds, special attention should be given to the birds on the list below. To get a list of all birds potentially present in your project area, visit the E-bird Explore Data Tool.

<table>
<thead>
<tr>
<th>NAME</th>
<th>BREEDING SEASON</th>
</tr>
</thead>
</table>

https://ecos.fws.gov/ipac/location/RG7HOY5O5HL7ASOA0XT5XEH4/resorcas
Brewer’s Sparrow Spizella breweri
https://ecos.fws.gov/ecp/species/9291
Breeds May 15 to Aug 10

Calliope Hummingbird Stellula calliope
https://ecos.fws.gov/ecp/species/9526
Breeds May 1 to Aug 15

Clark’s Grebe Aechmophorus clarkii
Breeds Jan 1 to Dec 31

Golden Eagle Aquila chrysaetos
https://ecos.fws.gov/ecp/species/1680
Breeds Apr 1 to Aug 31

Green-tailed Towhee Pipilo chlorurus
https://ecos.fws.gov/ecp/species/9444
Breeds May 1 to Aug 10

Lesser Yellowlegs Tringa flavipes
https://ecos.fws.gov/ecp/species/9679
Breeds elsewhere

Lewis’s Woodpecker Melanerpes lewis
https://ecos.fws.gov/ecp/species/19498
Breeds Apr 20 to Sep 30

Long-billed Curlew Numenius americanus
https://ecos.fws.gov/ecp/species/5511
Breeds Apr 1 to Jul 31

Marbled Godwit Limosa fedoa
https://ecos.fws.gov/ecp/species/19481
Breeds elsewhere

Olive-sided Flycatcher Contopus cooperi
https://ecos.fws.gov/ecp/species/914
Breeds May 20 to Aug 31

Red Knot Calidris canutus ssp. roselaria
https://ecos.fws.gov/ecp/species/6990
Breeds elsewhere

Sage Thrasher Oreoscoptes montanus
https://ecos.fws.gov/ecp/species/9433
Breeds Apr 15 to Aug 10

Sagebrush Sparrow Artemisiospiza nevadensis
Breeds Mar 15 to Jul 31

Willet Tringa semipalma
Breeds Apr 20 to Aug 5

Williamson’s Sapsucker Sphyrapicus thyroideus
https://ecos.fws.gov/ecp/species/8914
Breeds May 1 to Jul 31

Willow Flycatcher Empidonax traillii
https://ecos.fws.gov/ecp/species/4856
Breeds May 20 to Aug 31

Probability of Presence Summary
The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds.

Probability of Presence
Each green bar represents the bird’s relative probability of presence in your project’s counties during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar’s probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season
Yellow bars denote when the bird breeds in the Bird Conservation Region(s) in which your project lies. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort
https://ecos.fws.gov/ipac/location/RG7K03YSQ9SL7ASOAOX1T0XEH4/resourcs
Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the counties of your project area. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (-)
A week is marked as having no data if there were no survey events for that week.

Survey Timeframe
Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brewer's Sparrow</td>
<td></td>
</tr>
<tr>
<td>Calliope Hummingbird</td>
<td></td>
</tr>
<tr>
<td>Clark's Grebe</td>
<td></td>
</tr>
<tr>
<td>Golden Eagle</td>
<td></td>
</tr>
<tr>
<td>Green-tailed Towhee</td>
<td></td>
</tr>
<tr>
<td>Lesser Yellowlegs</td>
<td></td>
</tr>
<tr>
<td>Lewis's Woodpecker</td>
<td></td>
</tr>
<tr>
<td>Long-billed Curlew</td>
<td></td>
</tr>
<tr>
<td>Marbled Godwit</td>
<td></td>
</tr>
<tr>
<td>Olive-sided Flycatcher</td>
<td></td>
</tr>
<tr>
<td>Red Knot</td>
<td></td>
</tr>
<tr>
<td>Sage Thrasher</td>
<td></td>
</tr>
<tr>
<td>Sagebrush Sparrow</td>
<td></td>
</tr>
<tr>
<td>Willet</td>
<td></td>
</tr>
<tr>
<td>Williamson's Sapsucker</td>
<td></td>
</tr>
<tr>
<td>Willow Flycatcher</td>
<td></td>
</tr>
</tbody>
</table>

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Migratory Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Such measures are particularly important when birds are most likely to occur in the project area. To see when birds are most likely to occur in your project area, view the Probability of Presence Summary. Special attention should be made to look for nests and avoid nest destruction during the breeding season. The best information about when birds are breeding can be found in Birds of North America (BNA Online) under the “Breeding Phenology” section of each species profile. Note that accessing this information may require a subscription. Additional measures and/or germs may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS Birds of Conservation Concern (BCC) that might be affected by activities in your project location. These birds are of priority concern because they have been determined that without additional conservation actions, they are likely to become candidates for listing under the Endangered Species Act (ESA).

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN list represents all birds reported to be occurring at some level throughout the year in the counties in which your project lies. That list is then narrowed to only the Birds of Conservation Concern for your project area.

Again, the Migratory Bird Resource list only includes species of particular priority concern, and is not representative of all birds that may occur in your project area. Although it is important to try to avoid and minimize impacts to all birds, special attention should be made to avoid and minimize impacts to birds of priority concern. To get a list of all birds potentially present in your project area, please visit the E-bird Explore Data Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the Avian Knowledge Network (AKN). This data is derived from a growing collection of survey, banding, and citizen science datasets.

Probability of presence data is continuously being updated as new and better information becomes available.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird’s range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird entry on your migratory bird species list indicates a breeding season, it is probable the bird breeds in your project’s counties at some point within the time-frame.
Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the National Wildlife Refuge system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to NWI wetlands and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local J.S. Army Corps of Engineers District.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on the ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tubercloid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, whether the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.
Appendix C
National Inventory of Wetlands Map
This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.
Appendix D
EPA and IDEQ Hazardous Materials Data
Facility Description

Facility Id * 3-140149
Facility Name * STINKER STORE #44
Edited By mvanklee

Address Line 1 * 224 HOLLY ST
Address Line 2
Facility City * NAMPA
Facility Zip * 83651
Facility Latitude 43.56684
Facility Longitude -116.56403
Facility Status Active
Facility Phone

Date Certified 10/24/1991

Within 1000 feet of a drinking water source? * Yes

Contacts

Contact Name Contact Type Trained Date Start Date End Date Delete
Airport Partners, LLC Owner 11/13/2017
Alice Castillo Class B Operator 04/10/2017 04/10/2017
Corinda Scholz Class B Operator 08/22/2012 08/22/2012
Earl Arnold Class A Operator 08/15/2012 08/15/2012
Earl Arnold Class B Operator 08/15/2012 08/15/2012
KENT JOHNSON Other 10/24/1991
Roy Flores Class A Operator 08/14/2012 08/14/2012
Roy Flores Class B Operator 08/14/2012 08/14/2012
Stinker Stores Operator 11/13/2017
Stinker Stores Billing Contact 11/13/2017

Financial Responsibility

Type State Fund Expiration Date 08/01/2015

Tanks

Tank # Capacity Status Substance Tank Material Date Installed Delete
3-140149*1 10000 Currently In Use Premium E10 Fiberglass Reinforced Plastic 10/04/2004
3-140149*2 15000 Currently In Use Regular E10 Composite (Steel w/ FRP) 10/04/2004
3-140149*3 10000 Currently In Use Diesel Fiberglass Reinforced Plastic 10/04/2004
3-140149*4 12000 Permanently Out of Use Gasohol Cathodically Protected Steel (Impressed Current) 01/01/1970
3-140149*5 10000 Permanently Out of Use Gasohol Cathodically Protected Steel (Impressed Current) 01/01/1970
3-140149*6 4000 Permanently Out of Use Gasohol Fiberglass Reinforced Plastic 01/01/1975

Pipes

Description Status Pipe Type Pipe Material Date Installed Delete
1 Active Pressurized Flexible (Environ) 10/04/2004
2 Active Pressurized Flexible (Environ) 10/04/2004
3 Active Pressurized Flexible (Environ) 10/08/2004

Dispensers

Local Description Sump Containment Flex Connector CP Type Start Date End Date Delete
1&2 Contained No Metal Connectors/Fittings 10/04/2004
3&4 Contained No Metal Connectors/Fittings 10/04/2004
5&6 Contained No Metal Connectors/Fittings 10/04/2004
7&8 Contained No Metal Connectors/Fittings 10/04/2004
Inspection List

<table>
<thead>
<tr>
<th>Inspection Date</th>
<th>Prevention</th>
<th>Detection</th>
<th>Total</th>
<th>Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/01/2009</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>BOWE, CHRISTOPHER</td>
</tr>
<tr>
<td>12/20/2011</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>BOWE, CHRISTOPHER</td>
</tr>
<tr>
<td>10/02/2014</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>BOWE, CHRISTOPHER</td>
</tr>
<tr>
<td>10/25/2017</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>BOWE, CHRISTOPHER</td>
</tr>
</tbody>
</table>

LUST Events

<table>
<thead>
<tr>
<th>LUST ID</th>
<th>Confirmed Release</th>
<th>Cleanup Complete</th>
<th>Enforcement Effective</th>
<th>Enforcement Termination</th>
<th>EC</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1136</td>
<td>02/26/2004</td>
<td></td>
<td>03/08/2005</td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Contact DEQ Idaho.gov

Copyright © 2017 State of Idaho, All rights reserved.
Facility Description

Facility Id * 3-140122
Facility Name * HOLLY SERVICE
Address Line 1 * 103 HOLLY ST
Facility City * NAMPA
Facility Latitude 43.5685
Facility Longitude -116.5646
Edited By htimothy
Facility Status Closure
Date Certified 12/18/1991
Facility Type Gas Station
Owner Type *

Contacts

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Contact Type</th>
<th>Trained Date</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.E. VOYLES</td>
<td>Other</td>
<td>12/18/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E. VOYLES</td>
<td>Compliance Certifier</td>
<td>12/18/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOB NICHOLES</td>
<td>Owner</td>
<td>12/18/1991</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Financial Responsibility

<table>
<thead>
<tr>
<th>Type</th>
<th>Expiration Date</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Insured</td>
<td>12/18/1991</td>
<td></td>
</tr>
</tbody>
</table>

Tanks

<table>
<thead>
<tr>
<th>Tank #</th>
<th>Capacity</th>
<th>Status</th>
<th>Substance</th>
<th>Tank Material</th>
<th>Date Installed</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-140122*1</td>
<td>4000</td>
<td>Permanently Out of Use</td>
<td>Regular Gasoline</td>
<td>Not Listed</td>
<td>04/01/1959</td>
<td></td>
</tr>
<tr>
<td>3-140122*2</td>
<td>3000</td>
<td>Permanently Out of Use</td>
<td>Regular Gasoline</td>
<td>Asphalt Coated or Bare Steel</td>
<td>04/01/1959</td>
<td></td>
</tr>
<tr>
<td>3-140122*3</td>
<td>3000</td>
<td>Permanently Out of Use</td>
<td>Regular Gasoline</td>
<td>Asphalt Coated or Bare Steel</td>
<td>04/01/1959</td>
<td></td>
</tr>
</tbody>
</table>

Pipes

Dispensers

Inspection List

LUST Events

<table>
<thead>
<tr>
<th>LUST ID</th>
<th>Confirmed Release</th>
<th>Cleanup Complete</th>
<th>Enforcement Effective</th>
<th>Enforcement Termination</th>
<th>EC</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td>09/16/1996</td>
<td>07/19/2000</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>196</td>
<td>05/09/1997</td>
<td>07/19/2000</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
Attachment C Public Involvement Plan
PROJECT INTRODUCTION

The City of Nampa and the Community Planning Association of Southwest Idaho (COMPASS) are designing a project along the Holly Street corridor (Roosevelt Avenue to Hawaii Avenue) and on Roosevelt Avenue (Holly Street to 18th Avenue South) to address vehicle, bicycle, and pedestrian transportation safety issues along the corridor. This corridor, which provides access to many key locations in the area, is listed as a high priority on the Nampa Bicycle and Pedestrian Master Plan for installing bike lanes. In addition to installing bike lanes, the design will reduce existing width or number of automobile lanes and remove on-street parking which will slow traffic and increase pedestrian safety.

PUBLIC INVOLVEMENT OBJECTIVES

Public involvement will be important during the design phase to ensure that the final design aligns with the needs of the City of Nampa, while also meeting the needs of the community. Meetings were held with key stakeholders during the pre-concept phase but no outreach was conducted with the broader community. During the design phase, the public involvement team will work with key stakeholders and the broader community to both inform them about the project and gather input to understand key issues and concerns that may influence the design.

KEY MESSAGES

- This corridor has been identified as high priority for bike lanes because it can be used as an alternative north-south route to 12th Avenue Road and it provides connectivity to many key locations, including Northwest Nazarene University (NNU), the Nampa Recreation center, Liberty Park, services along 12th Avenue Road, and residential areas. These bike lanes will tie into existing routes along adjacent corridors to connect a missing segment in Nampa's bicycle network.
- It is important to provide safe pedestrian and bicycle routes in this area since a significant number of residents in this area do not have access to a vehicle. The proposed changes, in conjunction with planned changes by Valley Regional Transit to alter routes and increase frequency of service, will improve accessibility for residents.
- Even with reducing the existing width or number of automobile lanes, traffic will still operate at an acceptable level of service.
- Currently, crashes along this corridor are due to the relatively high vehicle speed and the lack of sight distance around the horizontal curves. This project will reduce crashes and increase pedestrian safety by providing traffic calming measures and installing a pedestrian crossing at the intersection of Fern Street and Clark Avenue.

KEY STAKEHOLDERS

The following is a list of key stakeholders identified during the pre-concept phase who have an interest in the project. Involvement with these groups/individuals early in the design phase will help ensure the project is successful.

- City of Nampa
- University District Association of Nampa (UDAN)
• Northwest Nazarene University (NNU) leaders, students and employees
• University District Steering Committee
• Valley Regional Transit
• Nampa Bike/Ped Advisory Council
• Safe Routes to School program
• Bike Walk Nampa
• Residents (particularly from Colorado Ave to Hawaii Ave)
• Businesses (particularly near the Roosevelt Avenue intersection)
• Nampa Fire Department
• Law enforcement
• U.S. Postal Service
• Local schools including Sky View High School

KEY STAKEHOLDER COORDINATION

The project team should provide regular updates to officials at the City of Nampa to share public feedback and obtain input as the project progresses to ensure the design is aligned with their plans for the area.

Individual meetings should also be held with other key stakeholders, including NNU, University District Steering Committee, and Valley Regional Transit, to understand their upcoming plans for the area that could potentially impact the project design. These meetings will also provide an opportunity for the project team to educate key stakeholders on the project’s purpose and to address any questions or concerns.

PROPERTY OWNER MEETINGS

The project team should meet individually with residents directly adjacent to Holly Street before the public open house to explain the proposed design. Residents along this corridor will be directly affected by the changes, especially those who will have on-street parking removed near their properties. These individual meetings will allow the project team to present the proposed changes to them before they attend the public open house, collect any comments or concerns, and gain local support early in the process.

PUBLIC OPEN HOUSE

A public open house should be held early during the design phase to inform residents, businesses, and the broader community about the project. The open house will also provide an opportunity to gather input about key issues and concerns from those groups. The open house should be advertised to adjacent properties and key stakeholders with a mailer and/or door-to-door fliers. Since this corridor serves as a north-south route for the larger Nampa community, broader advertisement should also be done, potentially including advertisements in the local newspapers, on local busses, and on local social media.

Due to the low level of vehicle access in this area, the open house should be held in close proximity to the corridor, at a time and place that can be easily accessed via public transportation and/or pedestrian routes. This will increase the likelihood that those most directly impacted by the project will be able to attend.
ADDITIONAL PUBLIC OUTREACH

The project team should maintain regular communication with adjacent properties and key stakeholders to provide updates as the design progresses. The demographics of this area, including the high poverty rate and large number of students, make it more challenging to reach all affected stakeholders using a single method of communication. Therefore, outreach should be done using a variety of methods (i.e. door-to-door flyers, mailers, phone calls, email updates, and a designated project website) to ensure all stakeholders have access to the information.

A project email address and hotline should be established to provide a way for stakeholders to contact the project team with questions or concerns. A database should be established to track these interactions which can then be used as a starting point for communications when the project reaches the construction phase.
Attachment D Cost Estimate
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>ESTIMATED</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Obliteration of Pavement Markings</td>
<td>9200</td>
<td>LF</td>
<td>$1.14</td>
<td>$10,488.00</td>
</tr>
<tr>
<td>2</td>
<td>Pedestrian Ramps</td>
<td>8</td>
<td>EA</td>
<td>$2,000.00</td>
<td>$16,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Overhead Flashing Beacon</td>
<td>1</td>
<td>EA</td>
<td>$15,000.00</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>4</td>
<td>Luminaires</td>
<td>2</td>
<td>EA</td>
<td>$5,000.00</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>5</td>
<td>Service Cabinets</td>
<td>2</td>
<td>EA</td>
<td>$5,000.00</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>6</td>
<td>Striping-White</td>
<td>25000.0</td>
<td>LF</td>
<td>$1.00</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>7</td>
<td>Striping-Yellow</td>
<td>15000.0</td>
<td>LF</td>
<td>$1.00</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>8</td>
<td>Striping-Thermoplastic</td>
<td>506.0</td>
<td>SF</td>
<td>$8.00</td>
<td>$4,048.00</td>
</tr>
<tr>
<td>9</td>
<td>Signing</td>
<td>155.0</td>
<td>SF</td>
<td>$13.00</td>
<td>$2,015.00</td>
</tr>
<tr>
<td>10</td>
<td>Bus Bulb-outs</td>
<td>6</td>
<td>EA</td>
<td>$5,530.00</td>
<td>$33,180.00</td>
</tr>
<tr>
<td>11</td>
<td>Sidewalk (260' x 5' wide)</td>
<td>145</td>
<td>SY</td>
<td>$50.00</td>
<td>$7,250.00</td>
</tr>
<tr>
<td>12</td>
<td>Traffic Control (5%)</td>
<td>1</td>
<td>LS</td>
<td>$5,377.55</td>
<td>$5,377.55</td>
</tr>
<tr>
<td>13</td>
<td>Mobilization (10%)</td>
<td>1</td>
<td>LS</td>
<td>$15,335.86</td>
<td>$15,335.86</td>
</tr>
<tr>
<td>14</td>
<td>Contingency (30%)</td>
<td>1</td>
<td>LS</td>
<td>$50,608.32</td>
<td>$50,608.32</td>
</tr>
<tr>
<td>15</td>
<td>Design</td>
<td>1</td>
<td>LS</td>
<td>$50,000.00</td>
<td>$50,000.00</td>
</tr>
</tbody>
</table>

Total Cost: $269,302.73

Includes: Restriping, 2 Pedestrian Crossings (1 Overhead Beacon), Curve warning signs, Sidewalk, Bus Bulb-outs